@lokvahkoor
2020-07-14T20:45:38.000000Z
字数 1593
阅读 672
AI
https://zh.d2l.ai/chapter_deep-learning-basics/linear-regression.html#
pytorch中的广播机制:当对两个形状不同的Tensor按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个Tensor形状相同后再按元素运算
x = torch.arange(1, 3).view(1, 2)
print(x)
y = torch.arange(1, 4).view(3, 1)
print(y)
print(x + y)
tensor([[1, 2]])
tensor([[1],
[2],
[3]])
tensor([[2, 3],
[3, 4],
[4, 5]])
param.data -= lr * param.grad / batch_size
import torch.utils.data as Data # 由于data常用作变量名,因此这里将导入的data模块用Data代替
batch_size = 10
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(features, labels)
# 随机读取小批量
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
利用pytorch简洁地定义模型:
完整定义:
class LinearNet(nn.Module):
def __init__(self, n_feature):
super(LinearNet, self).__init__()
self.linear = nn.Linear(n_feature, 1)
# forward 定义前向传播
def forward(self, x):
y = self.linear(x)
return y
net = LinearNet(num_inputs)
print(net) # 使用print可以打印出网络的结构
利用nn.Sequential
快速定义:
# 写法一
net = nn.Sequential(
nn.Linear(num_inputs, 1)
# 此处还可以传入其他层
)
# 写法二
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......
# 写法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
('linear', nn.Linear(num_inputs, 1))
# ......
]))
torch.utils.data
模块提供了有关数据处理的工具,torch.nn
模块定义了大量神经网络的层,torch.nn.init
模块定义了各种初始化方法,torch.optim
模块提供了很多常用的优化算法