@BravoWA
2016-11-25T17:15:37.000000Z
字数 6921
阅读 2526
LinearAlgebraSolver
PCG
Eigen
When I running my FSI code, I use Matlab bulit-in Preconditioned Conjugate Gradient (pcg) funtion to solve my pressure poisson equation. However, I found this built-in Matlab pcg solver is not multi-threaded. Hence, I want to use c-mex to warp a external c/cpp sparse linear algebra equation solver to speedup calculation. Here, my choice is Eigen (its development branch).
Platform: Win7 64bit with Intel C/CPP compiler, Matlab 2014b.
...
%%
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% solve
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
fprintf('MSG: Test of Eigen_pcg begin!!\n');
f_nnode = size(f_node_coord,1);
load('rhs_foreigentest.mat');
b = rhs;
x0 = zeros(f_nnode,1);
[f_H,b] = sol_CBS_impose_pbc(f_H,b,f_pbc_dof,f_pbc_val);
tic
[x1] = pcg(f_H, b,1e-5,1000 );
toc
b = rhs;
tic
[x] = c_sol_pcg_eigen(f_H_ir, f_H_jc, f_H_val, b, x0, 1000, 1e-5,int32(f_pbc_dof), f_pbc_val);
toc
b = rhs;
tic
[x2] = c_sol_pcg_eigen_OMP...
(f_H_ir, f_H_jc, f_H_val, b, x0, 1000, 1e-5,int32(f_pbc_dof), f_pbc_val);
toc
end
Sparse matrix H is [29292x29292], nnz of H is 389062.
Serial CPP-mex code for pcg_Eigen(dev)
Matlab cpp-mex bulid command:
mex -I".\eigen" c_sol_pcg_eigen.cpp
/*==========================================================
This subroutine is written in C for invoking in Matlab 2009a.
Before using it, compile this C code using proper C compiler.
[x] = c_sol_pcg_eigen(A_ir, A_jc, A_val, b, x0, maxiter, tol, pbc_dof, pbc_val)
Input:
(1) : A_ir, row-id vector for CSR Sparse matrix format.
(2) : A_jc, col-id vector for CSR Sparse matrix format.
(3) : A_val, value vector for CSR Sparse matrix format.
(4) : b, right-hands term.
(5) : x0, initial guess of unknowns variables.
(6) : maxiter, max number of iterations.
(7) : tol, tolerance of residuals to check if converged.
(8) : pbc_dof,
(9) : pbc_val.
Output:
(1) : x
Author: Chen Jiang 2016-04-20-15.42 jiangchen2007@gmail.coom
*========================================================*/
#include "mex.h"
#include "math.h"
#include "matrix.h"
#include <Eigen/Sparse>
#include <Eigen/Dense>
#include <vector>
#include <algorithm>
#include <iostream>
using namespace Eigen;
using namespace std;
typedef Eigen::Triplet<double> T;
// the gateway function
void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
//input vars
int *A_ir;
int *A_jc;
double *A_val;
double *b;
double *x0;
int maxiter;
double tol;
int *pbc_dof;
double *pbc_val;
//output vars
double *x;
//temp vars
int nrows;
int nnz;
std::vector<T> tripletList;
int npbc_dof;
//-----------------
// GetData
//-----------------
if(nrhs != 9){
mexErrMsgIdAndTxt("MEX:c_sol_pcg_eigen:rhs",
"This function takes too much input arguments.");
}
A_ir = (int*)mxGetData(prhs[0]);
A_jc = (int*)mxGetData(prhs[1]);
A_val = mxGetPr(prhs[2]);
b = mxGetPr(prhs[3]);
x0 = mxGetPr(prhs[4]);
maxiter = mxGetScalar(prhs[5]);
tol = mxGetScalar(prhs[6]);
pbc_dof = (int*) mxGetData(prhs[7]);
pbc_val = mxGetPr(prhs[8]);
nrows = mxGetM(prhs[3]);
npbc_dof = mxGetM(prhs[7]);
nnz = mxGetM(prhs[0]);
plhs[0] = mxCreateDoubleMatrix(nrows,1,mxREAL);
x = mxGetPr(plhs[0]);
//-----------------
//calculations
//-----------------
//covert A_ir, A_jc, A_val to Eigen Sparse matrix
tripletList.reserve(nnz);
for(int i=0; i<nnz; i++){
tripletList.push_back(T(A_ir[i]-1, A_jc[i]-1, A_val[i]));
}
SparseMatrix<double> A_eigen(nrows, nrows);
A_eigen.setFromTriplets(tripletList.begin(), tripletList.end());
Map<VectorXd> b_eigen(b, nrows);
//apply pbc
for(int idof = 0; idof < npbc_dof; idof++){
int dof = pbc_dof[idof]-1;
A_eigen.coeffRef(dof, dof) = 1.0e8;
b_eigen(dof) = 1.0e8*pbc_val[idof];
}
//CG solver of Eigen
VectorXd x_eigen;
Map<VectorXd> x0_eigen(x0, nrows);
ConjugateGradient<SparseMatrix<double>, Lower|Upper, IncompleteCholesky<double> > cg;
//ConjugateGradient<SparseMatrix<double>, Lower|Upper > cg;
//cg.preconditioner().setDroptol(0.001);
cg.setTolerance(tol);
cg.setMaxIterations(maxiter);
cg.compute(A_eigen);
x_eigen = cg.solveWithGuess(b_eigen, x0_eigen);
//x_eigen = cg.solve(b_eigen);
//
for(int i=0; i<nrows; i++){
x[i] = x_eigen(i);
}
}
OpenMP CPP-MEX code for PCG_Eigen(dev)
Mex build command in Windows7:
mex -I".\eigen_dev" c_sol_pcg_eigen_OMP.cpp COMPFLAGS="$COMPFLAGS /openmp"
Mex build command in Linux (opensuse):
mex c_sol_pcg_eigen_OMP.cpp -I".\eigen_dev" CXXPLFAGS="\$CXXFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
/*==========================================================
This subroutine is written in C for invoking in Matlab 2009a.
Before using it, compile this C code using proper C compiler.
[x] = c_sol_pcg_eigen(A_ir, A_jc, A_val, b, x0, maxiter, tol, pbc_dof, pbc_val)
Input:
(1) : A_ir, row-id vector for CSR Sparse matrix format.
(2) : A_jc, col-id vector for CSR Sparse matrix format.
(3) : A_val, value vector for CSR Sparse matrix format.
(4) : b, right-hands term.
(5) : x0, initial guess of unknowns variables.
(6) : maxiter, max number of iterations.
(7) : tol, tolerance of residuals to check if converged.
(8) : pbc_dof,
(9) : pbc_val.
Output:
(1) : x
Author: Chen Jiang 2016-04-24-10.59 jiangchen2007@gmail.com
*========================================================*/
#include "mex.h"
#include "math.h"
#include "matrix.h"
#include <Eigen/Sparse>
#include <Eigen/Dense>
#include <vector>
#include <algorithm>
#include <iostream>
#include <omp.h>
using namespace Eigen;
using namespace std;
typedef Eigen::Triplet<double> T;
// the gateway function
void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
//
Eigen::initParallel();
Eigen::setNbThreads(2);
//input vars
int *A_ir;
int *A_jc;
double *A_val;
double *b;
double *x0;
int maxiter;
double tol;
int *pbc_dof;
double *pbc_val;
//output vars
double *x;
//temp vars
int nrows;
int nnz;
std::vector<T> tripletList;
int npbc_dof;
//-----------------
// GetData
//-----------------
if(nrhs != 9){
mexErrMsgIdAndTxt("MEX:c_sol_pcg_eigen:rhs",
"This function takes too much input arguments.");
}
A_ir = (int*)mxGetData(prhs[0]);
A_jc = (int*)mxGetData(prhs[1]);
A_val = mxGetPr(prhs[2]);
b = mxGetPr(prhs[3]);
x0 = mxGetPr(prhs[4]);
maxiter = mxGetScalar(prhs[5]);
tol = mxGetScalar(prhs[6]);
pbc_dof = (int*) mxGetData(prhs[7]);
pbc_val = mxGetPr(prhs[8]);
nrows = mxGetM(prhs[3]);
npbc_dof = mxGetM(prhs[7]);
nnz = mxGetM(prhs[0]);
plhs[0] = mxCreateDoubleMatrix(nrows,1,mxREAL);
x = mxGetPr(plhs[0]);
//-----------------
//calculations
//-----------------
//covert A_ir, A_jc, A_val to Eigen Sparse matrix
tripletList.reserve(nnz);
for(int i=0; i<nnz; i++){
tripletList.push_back(T(A_ir[i]-1, A_jc[i]-1, A_val[i]));
}
SparseMatrix<double> A_eigen(nrows, nrows);
A_eigen.setFromTriplets(tripletList.begin(), tripletList.end());
Map<VectorXd> b_eigen(b, nrows);
//apply pbc
for(int idof = 0; idof < npbc_dof; idof++){
int dof = pbc_dof[idof]-1;
A_eigen.coeffRef(dof, dof) = 1.0e8;
b_eigen(dof) = 1.0e8*pbc_val[idof];
}
//CG solver of Eigen
VectorXd x_eigen;
Map<VectorXd> x0_eigen(x0, nrows);
ConjugateGradient<SparseMatrix<double>, Lower|Upper, IncompleteCholesky<double> > cg;
//ConjugateGradient<SparseMatrix<double>, Lower|Upper > cg;
//cg.preconditioner().setDroptol(0.001);
cg.setTolerance(tol);
cg.setMaxIterations(maxiter);
cg.compute(A_eigen);
x_eigen = cg.solveWithGuess(b_eigen, x0_eigen);
//x_eigen = cg.solve(b_eigen);
//
for(int i=0; i<nrows; i++){
x[i] = x_eigen(i);
}
}
norm(x1-x)/norm(x1) = 2.4111e-07
Elapsed time:
Matlab built-in pcg function: 2.39255 sec
Serial Cpp-mex pcg of Eigen: 0.56422 sec
OpenMP Cpp-mex pcg of Eigen: 0.518612 sec (2 threads only)
Even CPP-mex PCG of Eigen contains not only the PCG calculation codes but also the data structure transfering codes, it is still faster than its rival.