@Perfect-Demo
2018-05-01T10:18:20.000000Z
字数 12087
阅读 1196
机器学习深度学习
代码已上传github:
https://github.com/PerfectDemoT/my_deeplearning_homework
说明:
这是month4_week1的第一个作业,这里用tensorflow构建了一个拥有两个卷基层,两个池化层,一个全连接层的卷积神经网络。
用来检测手指比划数字。
有一个坑,大家要小心:
在执行foward propagation那部分的代码时,有可能你的代码都是正确的,但是你的运行结果却与juypter notebook上的expected output的结果不一样。我在同学的电脑上试图运行相同的代码,结果发现可以正常运行,且结果正确;但是在自己电脑上运行的结果却不一样。虽然不知道原因,但是有一个解决办法:那就是换成老版本的tensorflow。我最初使用的就是tensorflow1.6.0版本,后来换成了1.2.0的版本就可以正确输出结果了。
下面一步步看代码
import mathimport numpy as npimport h5pyimport matplotlib.pyplot as pltimport scipyfrom PIL import Imagefrom scipy import ndimageimport tensorflow as tffrom tensorflow.python.framework import opsfrom cnn_utils import *%matplotlib inlinenp.random.seed(1)
# Loading the data (signs)X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
# Example of a pictureindex = 6plt.imshow(X_train_orig[index])print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

X_train = X_train_orig/255.X_test = X_test_orig/255.Y_train = convert_to_one_hot(Y_train_orig, 6).TY_test = convert_to_one_hot(Y_test_orig, 6).Tprint ("number of training examples = " + str(X_train.shape[0]))print ("number of test examples = " + str(X_test.shape[0]))print ("X_train shape: " + str(X_train.shape))print ("Y_train shape: " + str(Y_train.shape))print ("X_test shape: " + str(X_test.shape))print ("Y_test shape: " + str(Y_test.shape))conv_layers = {}
# GRADED FUNCTION: create_placeholdersdef create_placeholders(n_H0, n_W0, n_C0, n_y):"""Creates the placeholders for the tensorflow session.Arguments:n_H0 -- scalar, height of an input imagen_W0 -- scalar, width of an input imagen_C0 -- scalar, number of channels of the inputn_y -- scalar, number of classesReturns:X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float""""### START CODE HERE ### (≈2 lines)X = tf.placeholder(name='X', shape=(None, n_H0, n_W0, n_C0), dtype=tf.float32)Y = tf.placeholder(name='Y', shape=(None, n_y), dtype=tf.float32)### END CODE HERE ###return X, Y
测试代码:
X, Y = create_placeholders(64, 64, 3, 6)print ("X = " + str(X))print ("Y = " + str(Y))
结果:
X = Tensor("Placeholder:0", shape=(?, 64, 64, 3), dtype=float32)Y = Tensor("Placeholder_1:0", shape=(?, 6), dtype=float32)
用到了tf.contrib.layers.xavier_initializer(seed = 0)函数,并且注意,tf.get_variable()内部参数的设定
def initialize_parameters():"""Initializes weight parameters to build a neural network with tensorflow. The shapes are:W1 : [4, 4, 3, 8]W2 : [2, 2, 8, 16]Returns:parameters -- a dictionary of tensors containing W1, W2"""tf.set_random_seed(1) # so that your "random" numbers match ours### START CODE HERE ### (approx. 2 lines of code)W1 = tf.get_variable(name='W1', dtype=tf.float32, shape=(4, 4, 3, 8), initializer=tf.contrib.layers.xavier_initializer(seed = 0))W2 = tf.get_variable(name='W2', dtype=tf.float32, shape=(2, 2, 8, 16), initializer=tf.contrib.layers.xavier_initializer(seed = 0))### END CODE HERE ###parameters = {"W1": W1,"W2": W2}return parameters
当然,其中的seed的设定是为了让值和expected的结果一样
输出一下:
tf.reset_default_graph()with tf.Session() as sess_test:parameters = initialize_parameters()init = tf.global_variables_initializer()sess_test.run(init)print("W1 = " + str(parameters["W1"].eval()[1,1,1]))print("W2 = " + str(parameters["W2"].eval()[1,1,1]))
结果为:
W1 = [ 0.00131723 0.14176141 -0.04434952 0.09197326 0.14984085 -0.03514394-0.06847463 0.05245192]W2 = [-0.08566415 0.17750949 0.11974221 0.16773748 -0.0830943 -0.08058-0.00577033 -0.14643836 0.24162132 -0.05857408 -0.19055021 0.1345228-0.22779644 -0.1601823 -0.16117483 -0.10286498]
有可能你的代码都是正确的,但是你的运行结果却与juypter notebook上的expected output的结果不一样。我在同学的电脑上试图运行相同的代码,结果发现可以正常运行,且结果正确;但是在自己电脑上运行的结果却不一样。虽然不知道原因,但是有一个解决办法:那就是换成老版本的tensorflow。我最初使用的就是tensorflow1.6.0版本,后来换成了1.2.0的版本就可以正确输出结果了。
解释:
对于函数 tf.nn.conv2d(input , filter , strides , padding , use_cudnn_on_gpu=None , name=None) :
input:指卷积需要输入的参数,具有这样的shape[batch, in_height, in_width, in_channels],分别是[batch张图片, 每张图片高度为in_height, 每张图片宽度为in_width, 图像通道为in_channels]。
filter:指用来做卷积的滤波器,当然滤波器也需要有相应参数,滤波器的shape为[filter_height, filter_width, in_channels, out_channels],分别对应[滤波器高度, 滤波器宽度, 接受图像的通道数, 卷积后通道数],其中第三个参数 in_channels需要与input中的第四个参数 in_channels一致,out_channels第一看的话有些不好理解,如rgb输入三通道图,我们的滤波器的out_channels设为1的话,就是三通道对应值相加,最后输出一个卷积核。
strides:代表步长,其值可以直接默认一个数,也可以是一个四维数如[1,2,1,1],则其意思是水平方向卷积步长为第二个参数2,垂直方向步长为1.其中第一和第四个参数我还不是很明白,请大佬指点,貌似和通道有关系。
padding:代表填充方式,参数只有两种,SAME和VALID,SAME比VALID的填充方式多了一列,比如一个3*3图像用2*2的滤波器进行卷积,当步长设为2的时候,会缺少一列,则进行第二次卷积的时候,VALID发现余下的窗口不足2*2会直接把第三列去掉,SAME则会填充一列,填充值为0。
use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true。大概意思是是否使用gpu加速,还没搞太懂。
name:给返回的tensor命名。给输出feature map起名字。
tf.nn.max_pool(value, ksize, strides, padding, name=None)
value:池化的输入,一般池化层接在卷积层的后面,所以输出通常为feature map。feature map依旧是[batch, in_height, in_width, in_channels]这样的参数。
ksize:池化窗口的大小,参数为四维向量,通常取[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1。ps:估计面tf.nn.conv2d中stries的四个取值也有 相同的意思。
stries:步长,同样是一个四维向量。
padding:填充方式同样只有两种不重复了。
tf.contrib.layers.flatten(P) 的参数意义。
tf.contrib.layers.flatten(P): given an input P, this function flattens each example into a 1D vector it while maintaining the batch-size. It returns a flattened tensor with shape [batch_size, k].
tf.contrib.layers.fully_connected(F, num_outputs)
tf.contrib.layers.fully_connected(F, num_outputs): given a the flattened input F, it returns the output computed using a fully connected layer. You can read the full documentation
下面看看代码:
def forward_propagation(X, parameters):"""Implements the forward propagation for the model:CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTEDArguments:X -- input dataset placeholder, of shape (input size, number of examples)parameters -- python dictionary containing your parameters "W1", "W2"the shapes are given in initialize_parametersReturns:Z3 -- the output of the last LINEAR unit"""# Retrieve the parameters from the dictionary "parameters"W1 = parameters['W1']W2 = parameters['W2']### START CODE HERE #### CONV2D: stride of 1, padding 'SAME'Z1 = tf.nn.conv2d(input=X, filter=W1, strides=(1, 1, 1, 1), padding='SAME')# RELUA1 = tf.nn.relu(Z1)# MAXPOOL: window 8x8, sride 8, padding 'SAME'P1 = tf.nn.max_pool(value=A1, ksize=(1, 8, 8, 1), strides=(1, 8, 8, 1), padding='SAME')# CONV2D: filters W2, stride 1, padding 'SAME'Z2 = tf.nn.conv2d(input=P1, filter=W2, strides=(1, 1, 1, 1), padding='SAME')# RELUA2 = tf.nn.relu(Z2)# MAXPOOL: window 4x4, stride 4, padding 'SAME'P2 = tf.nn.max_pool(value=A2, ksize=(1, 4, 4, 1), strides=(1, 4, 4, 1), padding='SAME')# FLATTENP2 = tf.contrib.layers.flatten(inputs=P2)# FULLY-CONNECTED without non-linear activation function (not not call softmax).# 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None"Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn=None)### END CODE HERE ###return Z3
输出一下:
tf.reset_default_graph()with tf.Session() as sess:np.random.seed(1)X, Y = create_placeholders(64, 64, 3, 6)parameters = initialize_parameters()Z3 = forward_propagation(X, parameters)init = tf.global_variables_initializer()sess.run(init)a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)})print("Z3 = " + str(a))
结果:
Z3 = [[-0.44670227 -1.57208765 -1.53049231 -2.31013036 -1.29104376 0.46852064][-0.17601591 -1.57972014 -1.4737016 -2.61672091 -1.00810647 0.5747785 ]]
这里用的是softmax回归,借助tensorflow框架,只需要一行代码即可完成cost
# GRADED FUNCTION: compute_costdef compute_cost(Z3, Y):"""Computes the costArguments:Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)Y -- "true" labels vector placeholder, same shape as Z3Returns:cost - Tensor of the cost function"""### START CODE HERE ### (1 line of code)cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y))### END CODE HERE ###return cost
输出结果:
tf.reset_default_graph()with tf.Session() as sess:np.random.seed(1)X, Y = create_placeholders(64, 64, 3, 6)parameters = initialize_parameters()Z3 = forward_propagation(X, parameters)cost = compute_cost(Z3, Y)init = tf.global_variables_initializer()sess.run(init)a = sess.run(cost, {X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)})print("cost = " + str(a))
结果:
cost = 2.91034
这个函数运用了前面的的所有的函数,创建占位符函数,随机初始化函数,前向传播函数,反向传播函数,cost函数。
然后用了mini-batch每一个Batch大小为64,对于反向传播,只需要一行。是下面这个:
下面我们来看看代码:
def model(X_train, Y_train, X_test, Y_test, learning_rate=0.009,num_epochs=100, minibatch_size=64, print_cost=True):"""Implements a three-layer ConvNet in Tensorflow:CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTEDArguments:X_train -- training set, of shape (None, 64, 64, 3)Y_train -- test set, of shape (None, n_y = 6)X_test -- training set, of shape (None, 64, 64, 3)Y_test -- test set, of shape (None, n_y = 6)learning_rate -- learning rate of the optimizationnum_epochs -- number of epochs of the optimization loopminibatch_size -- size of a minibatchprint_cost -- True to print the cost every 100 epochsReturns:train_accuracy -- real number, accuracy on the train set (X_train)test_accuracy -- real number, testing accuracy on the test set (X_test)parameters -- parameters learnt by the model. They can then be used to predict."""ops.reset_default_graph() # to be able to rerun the model without overwriting tf variablestf.set_random_seed(1) # to keep results consistent (tensorflow seed)seed = 3 # to keep results consistent (numpy seed)(m, n_H0, n_W0, n_C0) = X_train.shapen_y = Y_train.shape[1]costs = [] # To keep track of the cost# Create Placeholders of the correct shape### START CODE HERE ### (1 line)X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)### END CODE HERE #### Initialize parameters### START CODE HERE ### (1 line)parameters = initialize_parameters()### END CODE HERE #### Forward propagation: Build the forward propagation in the tensorflow graph### START CODE HERE ### (1 line)Z3 = forward_propagation(X, parameters)### END CODE HERE #### Cost function: Add cost function to tensorflow graph### START CODE HERE ### (1 line)cost = compute_cost(Z3, Y)### END CODE HERE #### Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.### START CODE HERE ### (1 line)optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)### END CODE HERE #### Initialize all the variables globallyinit = tf.global_variables_initializer()# Start the session to compute the tensorflow graphwith tf.Session() as sess:# Run the initializationsess.run(init)# Do the training loopfor epoch in range(num_epochs):minibatch_cost = 0.num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train setseed = seed + 1minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)for minibatch in minibatches:# Select a minibatch(minibatch_X, minibatch_Y) = minibatch# IMPORTANT: The line that runs the graph on a minibatch.# Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).### START CODE HERE ### (1 line)_, temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})### END CODE HERE ###minibatch_cost += temp_cost / num_minibatches# Print the cost every epochif print_cost == True and epoch % 5 == 0:print("Cost after epoch %i: %f" % (epoch, minibatch_cost))if print_cost == True and epoch % 1 == 0:costs.append(minibatch_cost)# plot the costplt.plot(np.squeeze(costs))plt.ylabel('cost')plt.xlabel('iterations (per tens)')plt.title("Learning rate =" + str(learning_rate))plt.show()# Calculate the correct predictionspredict_op = tf.argmax(Z3, 1)correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))# Calculate accuracy on the test setaccuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))print(accuracy)train_accuracy = accuracy.eval({X: X_train, Y: Y_train})test_accuracy = accuracy.eval({X: X_test, Y: Y_test})print("Train Accuracy:", train_accuracy)print("Test Accuracy:", test_accuracy)return train_accuracy, test_accuracy, parameters
输出一下:
_, _, parameters = model(X_train, Y_train, X_test, Y_test)
结果(迭代了100次,所以有20个输出(每隔五个输出一次))
Cost after epoch 0: 1.917929Cost after epoch 5: 1.506757Cost after epoch 10: 0.955359Cost after epoch 15: 0.845802Cost after epoch 20: 0.701174Cost after epoch 25: 0.571977Cost after epoch 30: 0.518435Cost after epoch 35: 0.495806Cost after epoch 40: 0.429827Cost after epoch 45: 0.407291Cost after epoch 50: 0.366394Cost after epoch 55: 0.376922Cost after epoch 60: 0.299491Cost after epoch 65: 0.338870Cost after epoch 70: 0.316400Cost after epoch 75: 0.310413Cost after epoch 80: 0.249549Cost after epoch 85: 0.243457Cost after epoch 90: 0.200031Cost after epoch 95: 0.175452
cost曲线图片如下

准确度计算:
Tensor("Mean_1:0", shape=(), dtype=float32)Train Accuracy: 0.940741Test Accuracy: 0.783333
fname = "images/thumbs_up.jpg"image = np.array(ndimage.imread(fname, flatten=False))my_image = scipy.misc.imresize(image, size=(64,64))plt.imshow(my_image)
好了,已经完成了用tensorflow搭建一个卷积神经网络