@Perfect-Demo
2018-05-01T08:42:13.000000Z
字数 8271
阅读 1084
机器学习深度学习
代码已上传github:
https://github.com/PerfectDemoT/my_deeplearning_homework
首先先导入包,(注意这和上一篇有一点不一样,多了一个包)
import timeimport numpy as npimport h5pyimport matplotlib.pyplot as pltimport scipyimport pylab #这个包是为了后面显示图片用的from PIL import Imagefrom scipy import ndimagefrom dnn_app_utils import * #这里导入的就是前一篇写好的各个函数。
然后老样子,和上一篇一样,先设置一下绘图尺寸,颜色啥的。。。
#%matplotlib inlineplt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plotsplt.rcParams['image.interpolation'] = 'nearest'plt.rcParams['image.cmap'] = 'gray'#%load_ext autoreload#%autoreload 2 np.random.seed(1)
然后开始导入数据,向量化,归一化,输出看看(之前的几篇文章都有详细一步步介绍,此不赘述,直接贴出代码)
#导入数据train_x_orig, train_y, test_x_orig, test_y, classes = load_data()# Example of a picture显示一下index = 10plt.imshow(train_x_orig[index])pylab.show()print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") + " picture.")# Explore your datasetm_train = train_x_orig.shape[0]num_px = train_x_orig.shape[1]m_test = test_x_orig.shape[0]print ("Number of training examples: " + str(m_train))print ("Number of testing examples: " + str(m_test))print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")print ("train_x_orig shape: " + str(train_x_orig.shape))print ("train_y shape: " + str(train_y.shape))print ("test_x_orig shape: " + str(test_x_orig.shape))print ("test_y shape: " + str(test_y.shape))print("================================")#Reshape the training and test examples 向量化一下train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensionstest_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T# Standardize data to have feature values between 0 and 1.train_x = train_x_flatten/255.test_x = test_x_flatten/255.print ("train_x's shape: " + str(train_x.shape))print ("test_x's shape: " + str(test_x.shape))print("====================================")
#来看看这个两层的模型# GRADED FUNCTION: two_layer_modeldef two_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False):"""Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.Arguments:X -- input data, of shape (n_x, number of examples)Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)layers_dims -- dimensions of the layers (n_x, n_h, n_y)num_iterations -- number of iterations of the optimization looplearning_rate -- learning rate of the gradient descent update ruleprint_cost -- If set to True, this will print the cost every 100 iterationsReturns:parameters -- a dictionary containing W1, W2, b1, and b2"""np.random.seed(1)grads = {}costs = [] # to keep track of the costm = X.shape[1] # number of examples(n_x, n_h, n_y) = layers_dims# Initialize parameters dictionary, by calling one of the functions you'd previously implemented### START CODE HERE ### (≈ 1 line of code)parameters = initialize_parameters(n_x, n_h, n_y)### END CODE HERE #### Get W1, b1, W2 and b2 from the dictionary parameters.W1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]# Loop (gradient descent)for i in range(0, num_iterations):# Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1". Output: "A1, cache1, A2, cache2".### START CODE HERE ### (≈ 2 lines of code)A1, cache1 = linear_activation_forward(X, W1, b1, activation = 'relu')A2, cache2 = linear_activation_forward(A1, W2, b2, activation = 'sigmoid')### END CODE HERE #### Compute cost### START CODE HERE ### (≈ 1 line of code)cost = compute_cost(A2, Y)### END CODE HERE #### Initializing backward propagationdA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))# Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".### START CODE HERE ### (≈ 2 lines of code)dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation = 'sigmoid')dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation = 'relu')### END CODE HERE #### Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2grads['dW1'] = dW1grads['db1'] = db1grads['dW2'] = dW2grads['db2'] = db2# Update parameters.### START CODE HERE ### (approx. 1 line of code)parameters = update_parameters(parameters, grads, learning_rate)### END CODE HERE #### Retrieve W1, b1, W2, b2 from parametersW1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]# Print the cost every 100 training exampleif print_cost and i % 100 == 0:print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))if print_cost and i % 100 == 0:costs.append(cost)# plot the costplt.plot(np.squeeze(costs))plt.ylabel('cost')plt.xlabel('iterations (per tens)')plt.title("Learning rate =" + str(learning_rate))plt.show()return parameters#调用一下parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)#下面用训练集和验证集分别看看准确度#predictions_train = predict(train_x, train_y, parameters)#训练集准确度百分之百#predictions_test = predict(test_x, test_y, parameters)#测试集准确度百分之七十二
说明一下,上面的函数虽然用了,layers_dims数组来存储所有的神经网络层的结点个数,不过内部只进行了两层的计算,所以没有扩展到N层的能力。
先上代码:
#接下来开始N层的神经网络### CONSTANTS ####先设置一下各层的神经元数目#当然,也可以在后面调用的时候设置这个数组layers_dims = [12288 , 20 , 7 , 5 , 1] # 5-layer model# GRADED FUNCTION: L_layer_modeldef L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False): # lr was 0.009"""Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.Arguments:X -- data, numpy array of shape (number of examples, num_px * num_px * 3)Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).learning_rate -- learning rate of the gradient descent update rulenum_iterations -- number of iterations of the optimization loopprint_cost -- if True, it prints the cost every 100 stepsReturns:parameters -- parameters learnt by the model. They can then be used to predict."""np.random.seed(1)costs = [] # keep track of cost# Parameters initialization.### START CODE HERE ###parameters = initialize_parameters_deep(layers_dims)### END CODE HERE #### Loop (gradient descent)for i in range(0, num_iterations):#Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.### START CODE HERE ### (≈ 1 line of code)AL, caches = L_model_forward(X, parameters)### END CODE HERE #### Compute cost.### START CODE HERE ### (≈ 1 line of code)cost = compute_cost(AL, Y)### END CODE HERE #### Backward propagation.### START CODE HERE ### (≈ 1 line of code)grads = L_model_backward(AL, Y, caches)### END CODE HERE #### Update parameters.### START CODE HERE ### (≈ 1 line of code)parameters = update_parameters(parameters, grads, learning_rate)### END CODE HERE #### Print the cost every 100 training exampleif print_cost and i % 100 == 0:print("Cost after iteration %i: %f" % (i, cost))if print_cost and i % 100 == 0:costs.append(cost)# plot the costplt.plot(np.squeeze(costs))plt.ylabel('cost')plt.xlabel('iterations (per tens)')plt.title("Learning rate =" + str(learning_rate))plt.show()return parameters
上面就是这个分类器了,赶紧来调用一下
#调用一下parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
别慌,这个一调用,会花不少训练时间,在此期间可以看看每经过100次运算,你所得到的cost函数是多少
过程如下:
Cost after iteration 0: 0.771749Cost after iteration 100: 0.673350Cost after iteration 200: 0.648247Cost after iteration 300: 0.620384Cost after iteration 400: 0.568401Cost after iteration 500: 0.520754Cost after iteration 600: 0.469203Cost after iteration 700: 0.487263Cost after iteration 800: 0.358436Cost after iteration 900: 0.347641Cost after iteration 1000: 0.291955Cost after iteration 1100: 0.273223Cost after iteration 1200: 0.229250Cost after iteration 1300: 0.196667Cost after iteration 1400: 0.176585Cost after iteration 1500: 0.157727Cost after iteration 1600: 0.142742Cost after iteration 1700: 0.139015Cost after iteration 1800: 0.123863Cost after iteration 1900: 0.111514Cost after iteration 2000: 0.105953Cost after iteration 2100: 0.098199Cost after iteration 2200: 0.094213Cost after iteration 2300: 0.087161Cost after iteration 2400: 0.082077
真是跑了一会儿啊,这多几层,,,跑一天不是梦。。。
然后输出cost-num_itera的曲线
然后输出了对于训练集和测试集的准确率
#看看训练集的准确度pred_train = predict(train_x, train_y, parameters)#看看测试集的准确度pred_test = predict(test_x, test_y, parameters)
得到:
train_Accuracy: 1.0test_Accuracy: 0.84
现在可以拿自己的图跑一跑啦,看看它认不认识你的猫咪
#测试一下自己的图片## START CODE HERE ##my_image = "my_image.jpg" # change this to the name of your image filemy_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)## END CODE HERE ##fname = "images/" + my_imageimage = np.array(ndimage.imread(fname, flatten=False))my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))my_predicted_image = predict(my_image, my_label_y, parameters)plt.imshow(image)pylab.show()print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
会显示一下你的图片,然后下面输出预测:
y = 1.0, your L-layer model predicts a "cat" picture.
好了,我们的猫咪检测器就这样做好了!!!