@Macux
2015-12-01T06:45:03.000000Z
字数 1664
阅读 1889
R语言_学习笔记
1、置换检验的作用:
2、 我一般这样用它:
3、我怎么用它:
> library(mvtnorm)
> library(TH.data)
> library(multcomp)
> library(coin)
> library(MASS)
> oneway_test(yield~N,data=npk,distribution=approximate(B=9999))
Approximative 2-Sample Permutation Test
data: yield by N (0, 1)
Z = -2.2288, p-value = 0.0243
alternative hypothesis: true mu is not equal to 0
由于样本容量只有24,如果直接用单因素方差分析来做,结果虽然也许也是显著不同,但很难让人信服。
情况二:已经事先将数据分好组,并放在不同的向量中。
> library(MASS)
> library(coin)
> wilcoxsign_test(U1~U2,data=UScrime,distribution="exact")
Exact Wilcoxon-Signed-Rank Test
data: y by x (neg, pos)
stratified by block
Z = 5.9691, p-value = 1.421e-14
alternative hypothesis: true mu is not equal to 0
> library(MASS)
> library(coin)
> library(reshape)
> attach(UScrime)
> UScrime <- rename(UScrime,c(y="y24"))
> cor.test(y24,Ed)
Pearson's product-moment correlation
data: y24 and Ed
t = 2.2882, df = 45, p-value = 0.02688
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.03931263 0.55824793
sample estimates:
cor
0.3228349
从结果上看,仿佛y24和Ed的相关性很显著,相关系数为0.3228349也具有不错的可信度。但是:
> spearman_test(y24~Ed,data=UScrime,distribution=approximate(B=99999))
Approximative Spearman Correlation Test
data: y24 by Ed
Z = 1.7341, p-value = 0.08317
alternative hypothesis: true mu is not equal to 0
用置换检验分析该数据集,得出的结论y24和Ed的相关系数不显著不为0。从样本容量来看,我们更应倾向于选择相信置换检验的分析结果。
回归分析
用lmPerm包中的lmp()函数代替基础包中的lm()函数,并设置参数perm="Prob"即可。
方差分析
用lmPerm包中的aovp()函数代替aov()函数,并设置参数perm="Prob"即可。
(增添的Iter栏列出的是要达到判停准则所需的迭代次数。)