@Guoguo0605
2016-04-10T23:38:00.000000Z
字数 4881
阅读 1251
code
trajectory_of_cannon_shell
# -*- coding: utf-8 -*-
import math
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
g = 9.8
b2m = 4e-5
r = []
X = []
Y = []
class flight_state:
def __init__(self, _x = 0, _y = 0, _vx = 0, _vy = 0, _t = 0):
self.x = _x
self.y = _y
self.vx = _vx
self.vy = _vy
self.t = _t
class cannon:
def __init__(self, _fs = flight_state(0, 0, 0, 0, 0), _dt = 0.01):
self.cannon_flight_state = []
self.cannon_flight_state.append(_fs)
self.dt = _dt
def next_state(self, current_state):
global g
next_x = current_state.x + current_state.vx * self.dt
next_vx = current_state.vx
next_y = current_state.y + current_state.vy * self.dt
next_vy = current_state.vy - g * self.dt
#print next_x, next_y
return flight_state(next_x, next_y, next_vx, next_vy, current_state.t + self.dt)
def shoot(self):
while not(self.cannon_flight_state[-1].y < 0):
self.cannon_flight_state.append(self.next_state(self.cannon_flight_state[-1]))
r = - self.cannon_flight_state[-2].y / self.cannon_flight_state[-1].y
self.cannon_flight_state[-1].x = (self.cannon_flight_state[-2].x + r * self.cannon_flight_state[-1].x) / (r + 1)
self.cannon_flight_state[-1].y = 0
def show_trajectory(self):
x = []
y = []
for fs in self.cannon_flight_state:
x.append(fs.x)
y.append(fs.y)
X.append(x)
Y.append(y)
# if n == 1:
# plt.subplot(111)
# line, = plot(x,y, label = labe)
# xlabel(r'$x(m)$', fontsize=16)
# ylabel(r'$y(m)$', fontsize=16)
# text(40767, 14500, 'initial speed: 700m/s\n' + 'firing angle: 45' + r'$^{\circ}$', color='black')
# title('Trajectory of cannon shell')#
# ax = gca()
# ax.spines['right'].set_color('none')
# ax.spines['top'].set_color('none')
# ax.xaxis.set_ticks_position('bottom')
# ax.yaxis.set_ticks_position('left')
# ax.set_xlim(0, 60000)
# ax.set_ylim(0, 18000)
# #show()
class drag_cannon(cannon):
def next_state(self, current_state):
global g, b2m
v = math.sqrt(current_state.vx * current_state.vx + current_state.vy * current_state.vy)
next_x = current_state.x + current_state.vx * self.dt
next_vx = current_state.vx - b2m * v * current_state.vx * self.dt
next_y = current_state.y + current_state.vy * self.dt
next_vy = current_state.vy - g * self.dt - b2m * v * current_state.vy * self.dt
#print next_x, next_y
return flight_state(next_x, next_y, next_vx, next_vy, current_state.t + self.dt)
class adiabatic_drag_cannon(cannon):
def next_state(self, current_state):
global g, b2m
factor = (1 - 6.5e-3 * current_state.y / 288.15) ** 2.5
v = math.sqrt(current_state.vx * current_state.vx + current_state.vy * current_state.vy)
next_x = current_state.x + current_state.vx * self.dt
next_vx = current_state.vx - factor * b2m * v * current_state.vx * self.dt
next_y = current_state.y + current_state.vy * self.dt
next_vy = current_state.vy - g * self.dt - factor * b2m * v * current_state.vy * self.dt
#print next_x, next_y
return flight_state(next_x, next_y, next_vx, next_vy, current_state.t + self.dt)
class isothermal_drag_cannon(cannon):
def next_state(self, current_state):
global g, b2m
factor = math.exp(-current_state.y / 1e4)
v = math.sqrt(current_state.vx * current_state.vx + current_state.vy * current_state.vy)
next_x = current_state.x + current_state.vx * self.dt
next_vx = current_state.vx - factor * b2m * v * current_state.vx * self.dt
next_y = current_state.y + current_state.vy * self.dt
next_vy = current_state.vy - g * self.dt - factor * b2m * v * current_state.vy * self.dt
#print next_x, next_y
return flight_state(next_x, next_y, next_vx, next_vy, current_state.t + self.dt)
speed = 700
theta = np.arange(30., 56., 0.1)
v_x = [speed * math.cos(i * math.pi / 180) for i in theta]
v_y = [speed * math.sin(i * math.pi / 180) for i in theta]
def wahaha():
b = []
for i in range(len(theta)):
b.append(adiabatic_drag_cannon(flight_state(0, 0, v_x[i], v_y[i], 0)))
#labe2 = str(theta[i]) + r'$^{\circ}$'
b[i].shoot()
# xx = [b[i].cannon_flight_state[j].x for j in range(len(b[i].cannon_flight_state))]
# yy = [b[i].cannon_flight_state[j].y for j in range(len(b[i].cannon_flight_state))]
# X.append(xx)
# Y.append(yy)
r.append(b[i].cannon_flight_state[-1].x)
b[i].show_trajectory()
#legend(loc='upper left', frameon=False)
wahaha()
p = r.index(max(r))
print theta[p], max(r),type(max(r))
fig = plt.figure()
ax = plt.axes(xlim=(0, 40000), ylim=(0, 18000))
#labe = str(theta[i]) + r'$^{\circ}$'
line, = ax.plot([], [],lw = 2,label = 'adiabatic model' ,color = 'red')
angle_text = ax.text(24167, 14400, '')
maxrange_text = ax.text(24167, 12400, '')
plt.xlabel(r'$x(m)$', fontsize=16)
plt.ylabel(r'$y(m)$', fontsize=16)
plt.title('Trajectory of cannon shell')
plt.legend(loc='upper left', frameon=False)
# initialization function: plot the background of each frame
def init():
line.set_data([], [])
angle_text.set_text('')
maxrange_text.set_text('')
return line, angle_text, maxrange_text
# animation function. This is called sequentially
# note: i is framenumber
def animate(i):
x = X[i]
y = Y[i]
line.set_data(x, y)
pct = float(X[i][-1])/float(max(r))*100
angle_text.set_text('initial speed: 700m/s\n' + 'firing angle: %s' % theta[i] + r'$^{\circ}$' + '\nrange: %f %%' % pct)
if i > p:
maxrange_text.set_text('max range: %s' % max(r))
maxrange_text.set_color(color='red')
return line, angle_text, maxrange_text
fram = len(theta)
# call the animator. blit=True means only re-draw the parts that have changed.
anim=animation.FuncAnimation(fig, animate, init_func=init, frames=fram, interval=30, blit=True)
#anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264'])
plt.show()
#show()