@Emptyset
2015-11-24T12:49:24.000000Z
字数 5828
阅读 2570
Probability
“他说 / 你任何为人称道的美丽 / 不及他第一次遇见你。”
——《南山南》
本文用尽可能少的内容提供了建立概率测度(probability measure)所需要的公理和定义。
Abstract:这里想谈一下直觉性的理解,为什么概率测度要与
σ -algebra扯上关系呢?就概率事件而言,空集和全集肯定都得在A 里头,这刚好是下文的性质1;任何一个事件必然有它的反面存在,这就是性质2——任何一个事件的补集也必须在A 里头;性质4也是满足了概率的研究条件——因为概率测度(probability measure)的建立需要countable additivity, 那么显然这性质4(countable union and intersection)就是需要有的。所以σ -algebra就像是为概率测度量身打造的一种代数结构。
这一节介绍了σ -algebra,定义在R 上的Borelσ -algebra, probability measure,以证明完概率测度P 具有连续性结束。
Let
∅∈A andΩ∈A ;- If
A∈A thenAc∈A , whereAc denotes the complement of A;A is closed under finite unions and finite intersections: that is, ifA1,...,An are all inA , then⋃ni=1Ai and⋂ni=1Ai are inA as well;A is closed under countable unions and intersections: that is, ifA1,A2,A3,... is a countable sequence of events inA , then⋃ni=1Ai and⋂ni=1Ai are both also inA .
Definition 1
Note: (1)+(4) implies (3), hence any
Definition 2 If
Example:
1.
2.
3. If
Theorem 1 The Borel
Proof: Let
C denote all open intervals. Since every open set inR is the countable union of open intervals, we haveσ(C)= the Borelσ -algebra ofR .
LetD denote all intervals of the form(−∞,a] , wherea∈Q . Let(a,b)∈C , and let(an)n≥1 be a sequence of rationals decreasing toa and(bn)n≥1 be a sequence of rationals increasing strictly tob . Then
(a,b)=⋃n=1∞(an,bn]=⋃n=1∞((−∞,bn]∩(−∞,an]c)
ThereforeC⊂σ(D) , whereσ(C)⊂σ(D) . However since each element ofD is a closed set, it is also a Borel set, and thereforeσ(D) is contained in the Borel setsB . Thus we have
B=σ(C)⊂σ(D)⊂B
and henceσ(D)=B .
Definition 3 A probability measure defined on a
1.
2. For every countable sequence
Note: Axiom (2) is called countable additivity, the number
P(A) is called the probability of the eventA .
Theorem 2 If
1.
2. P is finite additive.
Note: 第二点finite additivity可以直接Definition 3(2)的countable additivity获得。需要注意finite additivity并不是countable additivity的充分条件。尽管finite additivity从直觉上很容易理解,但是它能做的事情实在是太少了(比如它无法处理极限情况),下面这个定理将揭示countable additivity的作用。
Theorem 3 Let
1. Axiom(2) of Definition 3 (Countable Additivity)
2. If
3. If
4. If
5. If
Note:这里的Notation
An↑A 是指An⊂An+1 and∪∞n=1An=A ;An↓A 是指An+1⊂An and∩∞n=1An=A
Theorem 4 Let
Proof: Let us define
lim supn→∞An=∩∞n=1∪m≥nAmlim infn→∞An=∪∞n=1∩m≥nAm
SinceA is aσ -algebra, we havelim supn→∞An∈A andlim infn→∞An∈A .
By hypothesisAn converges toA , which meanslimn→∞1An=1A , allω . This is equivalent to saying thatA=lim supn→∞An=lim infn→∞An . ThereforeA∈A .
Now letBn=∩m≥nAm andCn=∪m≥nAm . Thenlimn→∞P(Bn)=limn→∞P(Cn)=P(A) , by Theorem 3. HoweverBn⊂An⊂Cn , thereforeP(Bn)≤P(An)≤P(Cn) , solimn→∞P(An)=P(A) as well.
Note: 这里通过引入