@tinadu
2017-09-10T11:27:47.000000Z
字数 4168
阅读 1342
未分类
系列导读:《无痛的增强学习入门》系列文章旨在为大家介绍增强学习相关的入门知识,为大家后续的深入学习打下基础。其中包括增强学习的基本思想,MDP框架,几种基本的学习算法介绍,以及一些简单的实际案例。
作为机器学习中十分重要的一支,增强学习在这些年取得了十分令人惊喜的成绩,这也使得越来越多的人加入到学习增强学习的队伍当中。增强学习的知识和内容与经典监督学习、非监督学习相比并不容易,而且可解释的小例子比较少,本系列将向各位读者简单介绍其中的基本知识,并以一个小例子贯穿其中。
在第一篇中,我们以蛇棋为例,主要介绍了增强学习的核心流程,那就是Agent与Environment的交互。
在第二篇中,我们曾简单介绍了计算最优策略的方法——先得到同一状态下不同行动的价值估计,再根据这些价值估计计算出最优的策略选择。
在第三篇中,详细介绍了采用这个战术实现的算法——策略迭代法(Policy Iteration)。
在前面我们介绍了策略的迭代的算法,它可以解决蛇棋的策略规划问题,帮助我们更好地完成游戏。从算法中可以看出,算法的主要时间都花费在策略评估上,对于一个简单的问题来说,这部分时间还算好,但是对于复杂的问题来说,这个步骤的时间实在有些多了。一个最直接的想法就是——我们能不能缩短这部分的时间?比方说,我们大概估计出当前策略下每个状态的价值函数就好,这样已经可以帮助我们找出最优的策略了,再做更精细的评估实际上并不必要?这就是这四篇的主角——价值迭代法的思想来源。
5 泛化策略迭代
5.1 两个极端
在上一节我们卖了一个关子,那就是为什么价值迭代的运算速度反而不快。这一节我们将来解答这个问题。让我们回到问题,来看看前面介绍的两种算法的特点。
策略迭代法的中心是策略函数,通过策略评估+策略提升两个步骤使策略变得越来越好;价值函数通过自我更新、动态规划的方式不断迭代更新价值函数,并最终求出策略函数。我们可以看出两者的一些特点:
我们发现了一个关键:那就是两者都需要训练策略函数和价值函数,只是侧重点不同。策略迭代的核心是策略,为了使策略能够提升,价值函数可以求解得准确,也可以求解得不准确;价值迭代的核心是价值,算法的核心部分根本没有出现与策略有关的内容,直到最后才出现了策略。
两种方法都十分看重自己关心的那部分,而可以选择忽略另一部分,因此可以看出两个方法都比较极端。既然我们找到了两个极端的方法,那么我们可不可以找到两种方法的中间带呢?当然是可以的,这就是本节要介绍的泛化迭代法,英文一般称为Generalized Policy Iteration,但我觉得这个词里只出现Policy是不够准确的。
5.2 泛化迭代法
图1 泛化迭代示意图
上面图1展示了泛化迭代的一个基本形式。所谓的泛化迭代,是将解决这一类问题的算法归纳成一个算法族,并总结这一类算法的特点。图上展示了两条主线,下面一条线是策略的更新线,如果我们把策略想象成一个连续的空间,那么它就是从某套策略出发,连续地逼近最优策略-价值对。上面一条线是价值的更新线,因为我们前面遇到的问题中,价值函数是连续的,所以这条线并不难得到。
图中的折线主要表达了策略迭代的算法,我们选定某个策略,求解价值函数,然后更新策略,这样优化的轨迹会不断地在两条主线上跳动。而对于价值迭代的算法,则是一直在上面那条线上行走,如图2所示:
图2 价值迭代法的示意图
那么还有别的优化方法么?前面提到我们已知的两种方法是两个极端,它们就像一条线段的两个端点一样,其他的算法都可以由这两个方法加权平均得到,比方说下面这个算法,如图3所示:
图3 泛化迭代的示意图
我们先做几轮价值迭代,然后再做策略迭代,这样的方法同样可以得到正确的结果,但是可能会有更快的速度。
那么我们回到上一节的问题中,为什么价值迭代的方法会慢?
由于我们的蛇棋问题是一个离散的状态,对应的策略也是离散的,因此这个问题的示意图是这样的:
图4 蛇棋问题的泛化迭代图
由于策略是离散的,所以任意一个策略可能和某个范围内的价值函数对应,因此在价值函数优化到某一步时,已经可以得到最优的策略,然而按照价值函数算法的定义,我们要等到价值函数在数值上收敛。而随着优化过程不断进行,最后的优化将会变得比较艰难,因此这个算法需要的时间比较长。
5.3 实现
通过上面的分析,我们就可以尝试将两种算法结合起来。
def generalized_policy_iteration(self):
self.value_iteration(10)
self.policy_iteration(-1,1)
这个函数就是泛化优化的一种实现形式,它的算法是先执行10轮价值迭代的优化,然后进行策略迭代,同时策略迭代中的策略评估只进行一个循环的更新。经过这样的设计,我们可以看看它的用时:
np.random.seed(0)
env = Snake(10, [3,6])
agent = TableAgent(env.state_transition_table(), env.reward_table())
with timer('Timer PolicyIter'):
agent.policy_iteration()
print 'return_pi={}'.format(eval(env,agent))
print agent.policy
print '================='
agent2 = TableAgent(env.state_transition_table(), env.reward_table())
with timer('Timer ValueIter'):
agent2.value_iteration()
print 'return_pi={}'.format(eval(env,agent2))
print agent2.policy
print '================='
agent3 = TableAgent(env.state_transition_table(), env.reward_table())
with timer('Timer GeneralizedIter'):
agent3.generalized_policy_iteration()
print 'return_pi={}'.format(eval(env,agent3))
print agent3.policy
从代码中可以看出,我们同时进行了3组实验,分别是策略迭代,价值迭代和我们给出的一种泛化迭代法,那么它们的结果如何呢?
Timer PolicyIter COST:0.186598777771
return_pi=84
=================
Timer ValueIter COST:0.0881521701813
return_pi=84
=================
Timer GeneralizedIter COST:0.0130021572113
return_pi=84
虽然实验比较粗糙,但是我们还是可以明显看出几个算法在时间上的差距。通过一定的设计,泛化迭代确实可以做到更快的计算和收敛。当然,泛化迭代带给我们的不止是更快的速度了。
5.4 从模型已知到无模型算法
前面我们接触过的问题有一个特点,那就是我们可以看到蛇棋的棋盘,换句话说,我们可以了解到整个游戏的全貌,当我们发现前方有一个梯子时,我们可以根据前方是上升梯子还是下降梯子来决定使用哪个骰子,或者使用遥控骰子。这时候我们相当于站在了上帝视角,能够看清一切情况。
但一个可悲的事实是,在很多实际问题中,我们无法得到游戏的全貌。这其中有几个原因,一是游戏的全貌可能十分复杂,复杂到我们难以把所有的状态罗列出来。比方说围棋问题,每一个格子上都可以有三个状态:无子,黑子和白子,那么19*19=361个格子,我们一共有个状态,这样数量的状态想要罗列清楚是十分困难的。另一种是中间的一些状态过渡的信息无法获得,比方说我们下面的进阶版蛇棋,在这个新版蛇棋中,我们将不再显示棋盘和骰子的投掷数目,每一次当玩家选择完所使用的手法后,玩家将直接得到棋子的下一个落脚点。也就是说:
这个公式将不再变得已知了。对于这样的盲棋,我们该如何解决?前面的学习算法很优雅,但是需要太多的环境信息,此时当我们去掉了这些信息,我们需要换个思路。而这个思路,才是增强学习的精髓。
增强学习的一大特点是才尝试中不断学习。在前面的问题中,我们的Agent并没有进行尝试,就可以直接完成学习的任务,Agent仿佛是一个战略指挥家,等到一切局势确定,开始战略部署。而现在,眼前的问题充满了迷雾,指挥家也不得不放下身段,亲自参与其中,通过尝试获得最优策略的经验。
那么新的算法的思路大致如下所示:
接下来我们要接触两个算法:分别是蒙特卡罗法和策略迭代法。关于它们的内容我们下一节再说。
作者介绍:冯超,毕业于中国科学院大学,猿辅导研究团队视觉研究负责人,小猿搜题拍照搜题负责人之一。2017年独立撰写《深度学习轻松学:核心算法与视觉实践》一书(书籍链接:https://item.jd.com/12106435.html),以轻松幽默的语言深入详细地介绍了深度学习的基本结构,模型优化和参数设置细节,视觉领域应用等内容。自2016年起在知乎开设了自己的专栏:《无痛的机器学习》,发表机器学习与深度学习相关文章,收到了不错的反响,并被多家媒体转载。曾多次参与社区技术分享活动。