[关闭]
@smilence 2016-10-17T06:50:39.000000Z 字数 7875 阅读 2198

第六部分:树和图

算法面试指南

数据结构推荐教材: http://people.cs.vt.edu/shaffer/Book/

6.1 树与堆知识解析

1.关于Tree

  1. //Definition for binary tree
  2. struct TreeNode {
  3. int val;
  4. TreeNode *left;
  5. TreeNode *right;
  6. TreeNode(int x) : val(x), left(NULL), right(NULL) {}
  7. };

Keywords: Binary Search Tree, Balanced Tree, Full tree, Complete Tree
BST适用于快速检索( ),通过in-order遍历可以ascending输出sorted data。
DFS Traversal: In-order traversal, pre-order and post-order.
注意尽量不要在DFS中调用有DFS操作的函数,可以通过统一两个函数的返回值的办法来合并。
对树的所有操作务必注意边界条件( root == NULL)

2.Trie: 又称prefix tree或字典树。N-aray tree, 方便提供string或string前缀的快速检索。 Unlike a binary search tree, no node in the tree stores the key associated with that node; instead, its position in the tree defines the key with which it is associated.

  1. class TrieNode {
  2. private:
  3. char mContent;
  4. bool mMarker;
  5. vector<TrieNode*> mChildren;
  6. public:
  7. Node() { mContent = ' '; mMarker = false; }
  8. ~Node() {}
  9. friend class Trie;
  10. };
  11. class Trie {
  12. public:
  13. Trie();
  14. ~Trie();
  15. void addWord(string s);
  16. bool searchWord(string s);
  17. void deleteWord(string s);
  18. private:
  19. TrieNode* root;
  20. };

3.Heap与priority_queue
Heap首先是一个Binary complete tree,其次是它满足partial order;从具体实现上说通常用array来实现,节点的位置关系通过index体现。
值得注意的是,heap的插入操作逐层sift-up,耗时,与Binary Tree的插入相同。但Build heap通过sift-down所有非叶子节点实现,耗时,小于BST的

priority_queue是STL中heap的类模板。常用函数:top(),pop(),push(const val_type&),empty(),类似<stack>
在初始化priority_queue时,应尽量使用其constructor,而非循环插入元素。在constructor模板中,需要声明comparison class,注意默认的param1 < param2对应max heap。

  1. //example: min heap for nodes based on their values
  2. struct comp{
  3. bool operator() ( Node * param1, Node *param2 ){
  4. return param1->val > param2->val;
  5. }
  6. };
  7. void buildHeap(){
  8. vector<Node *> vn;
  9. priority_queue<Node *, vector<Node *>,comp> heap( vn.begin(), vn.end() );
  10. }

对于user-define的类型,也可以重载<预算符,而不声明comparison class。

6.2 图的知识解析

4.Graph implementations
每个vertical用一个int类型的ID来代表,实际的数据可以存储在<vector>中。
a. adjacency matrix,space cost: ,适合密集graph, 可以用int[N][N]二维数组实现;
b. adjacency list, space cost: , 适合稀疏graph, 可以用vector<list<int> >来实现,vector的size为
注:对于undirected graph中的edge,可以视作双向edge;
而标记visit状态的变量,可以作为node本身的属性,或利用数组/hashtable来实现

5.Graph Traversal (DFS and BFS)

  1. void graphTraverse( Graph *G ){
  2. //much depends on your implementation for the graph
  3. int v;
  4. for( v = 0; v != G->n(); v++)
  5. G->setMark( v, UNVISITED );
  6. for( v = 0; v != G->n(); v++)
  7. if( G->getMark(v) == UNVISITED )
  8. doTraverse(G,v); // can be DFS or BFS here
  9. }
  1. //DFS
  2. void DFS( Graph *G, int v ){
  3. preVisit( G, v );
  4. G->setMark( v, VISITING ); //use "VISITNG" to tag the state between previsit and postvisit
  5. for( int w = G->first(v); w != G->n(); w = G->next(v,w) )
  6. if( G->getMark(v) == UNVISITED )
  7. DFS( G, w);
  8. postVisit( G,v );
  9. G->setMark( v, VISITED );
  10. }
  1. //BFS
  2. void BFS( Graph *G, int start ){
  3. int v,w;
  4. queue<int> Q;
  5. G->setMark( start, VISITING );
  6. Q.push( start );
  7. while(!Q.empty()){
  8. v = Q.front();
  9. Q.pop();
  10. visit( G, v );
  11. G->setMark( v ,VISITED);
  12. for( w = G->first(v); w != G->n(); w = G->next( v, w) )
  13. if( G->getMark(w) == UNVISITED ){
  14. //you can also choose to visit here so you visit "earlier"
  15. G->setMark(w) = VISITING; //use "VISITING" to identify "candidates" for visits
  16. Q.push(w);
  17. }
  18. }
  19. }

6.单源最短路径问题
Dijkstra算法,贪心算法( 局部最优解决定全局最优解),可以利用数学归纳法证明其正确性。
基本思路是找到局部最优的前驱节点,并据此update该节点的后驱节点,直到所有节点得到update。

  1. class DijkElem{
  2. public:
  3. int vertex, distance;
  4. DijkElem( int v = -1, int d = numeric_limit<int>::max() ){
  5. vertex = v;
  6. distance = d;
  7. }
  8. }
  9. bool operator<(const DijkElem &param1, const DijkElem &param2){
  10. return param1.distance> param2.distance; //considering we need a min heap here.
  11. }
  12. void Dijkstra( Graph *G, int *D, int s){
  13. int i,v,w;
  14. DijkElem temp;
  15. priority_queue<DijkElem> minHeap;
  16. //initialize distance array, every node considered to be infinitely far from source
  17. D = new int[G->n()];
  18. for( i = 0; i < G->n(); ++i){
  19. D[i] = numeric_limit<int>::max();
  20. }
  21. //start from the source;
  22. temp.vertex = s;
  23. temp.distance = 0;
  24. minHeap.push(temp);
  25. D[s] = 0;
  26. for( i = 0; i < G->n(); ++i ){
  27. //find a vertex with minimum distance each time
  28. do{
  29. if( minHeap.empty() ) return;
  30. temp = minHeap.top();
  31. minHeap.pop();
  32. v = temp.vertex;
  33. }while( G->getMark(v) == VISITED );
  34. G->setMark(v,VISITED);
  35. if( D[v] == numeric_limit<int>::max() )
  36. return;
  37. //update its children
  38. for( w = G->first(v); w != G->n(); w = G->next(v,w) ){
  39. if( D[w] > D[v] + G->weight(v,w) ){
  40. D[w] = D[v] + G->weight(v,w);
  41. temp.distance = D[w];
  42. temp.vertex = w;
  43. minHeap.push(w);
  44. }
  45. }
  46. }

6.3 树与图问题的分治法使用

1.subGraph 或 subTree 的局部最优解解问题
如果全局解可以分割成subTree或subGraph 互相独立的局部解(即局部最优解推出全局最优解),一般可以采用D&C策略,用DFS递归判断subtree或subgraph的解,结合当前节点返回局部解另见Chapter 7 Backtracking问题的相关说明。

e.g.1 Check if a binary tree is balanced. ( CtCI: 4.1, Leetcode:Balanced Binary Tree )

  1. // How to improve over this? (call another recursion within recursion)
  2. bool isBalanced(TreeNode* root) {
  3. if (root == NULL) {
  4. return true;
  5. }
  6. if (abs(depth(root->left) - depth(root->right)) > 1)
  7. return false;
  8. return isBalanced(root->left) && isBalanced(root->right);
  9. }
  10. int depth(TreeNode* root) {
  11. if (root == NULL) {
  12. return 0;
  13. }
  14. return max(depth(root->left), depth(root->right)) + 1;
  15. }
  1. // Optimal solution with aggregating two recursions
  2. bool isBalanced(TreeNode* root) {
  3. if (root == NULL) {
  4. return true;
  5. }
  6. return depth(root) != -1;
  7. }
  8. int depth(TreeNode* root) {
  9. if (root == NULL) {
  10. return 0;
  11. }
  12. int leftDepth = depth(root->left);
  13. if (leftDepth == -1) {
  14. return -1;
  15. }
  16. int rightDepth = depth(root->right);
  17. if (rightDepth == -1) {
  18. return -1;
  19. }
  20. if (abs(leftDepth-rightDepth) > 1) {
  21. return -1;
  22. }
  23. return max(leftDepth,rightDepth) + 1;
  24. }

e.g.2 Check if a binary tree is a BST. ( CtCI: 4.5, Leetcode:Validate Binary Search Tree)

  1. bool isValidBST(TreeNode *root,int min, int max){
  2. if(!root) return true;
  3. // visit before recursion
  4. if(root->val <= min || root->val >= max) return false;
  5. // how compiler would handle this part?
  6. return isValidBST(root->left,min,root->val) && isValidBST(root->right,root->val,max);
  7. }
  8. bool isValidBST(TreeNode *root) {
  9. return isValidBST(root,numeric_limits<int>::min(), numeric_limits<int>::max());
  10. }

e.g.3 Check if T2 is a subtree of T1. ( CtCI: 4.8 )
e.g.4 Check if a graph has a cycle.
e.g.5 Given a binary tree, find its minimum depth.( Leetcode:Minimum Depth of Binary Tree)

2.将Tree转换成其他Data Structure的问题
如果是分层转换,则使用BFS,用list<TreeNode *> parentslist<TreeNode *> children记录邻近的两层,代替<queue>。如果不是,则类似 1类问题,采用D&C策略,root->leftroot->right两个subtree分别转换成目标数据结构,返回“适当的变量”,再处理root节点。如果是将其他数据结构转换为tree,则类似:将两部分递归转换成subtree,然后处理当前节点。

e.g.1 Given a binary tree, creates linked lists of all the nodes at each depth( CtCI 4.4 )
e.g.2 Given a binary tree, flatten it to a linked list in-place. (Leetcode: Flatten Binary Tree to Linked List)
e.g.3 Convert a binary tree into a doubly linked list in place. (CtCI 17.13)
e.g.4 Convert a sorted array( increasing order ) to a balanced BST. ( CtCI 4.3, Leetcode: Convert Sorted Array to Binary Search Tree )

6.4 树与图的遍历(1)

1.Tree的path问题
一般来说,属于 问题。( 将在Recursion一章提到)
对于tree的单向path问题(每条path,每层只经过一个节点),则使用DFS来访问tree,可以利用一个vector<int> &path来记录路径(毕竟,对于backtracking来说,每次只需考虑一条path即可,无论这条path通往“胜利条件”与否 ),并在每次访问时判定是否满足“胜利条件”,返回bool值或在胜利情形下将当前的路径path记录下来。注意在postVisit节点时path.pop_back();

e.g.1 Given a binary tree, print all paths which sum to a give value.(CtCI: 4.9)
e.g.2 Given a binary tree, find all root-to-leaf paths which sum to a given value.(Leetcode: Path Sum II)

2.寻找特定节点
给定节点,寻找与之有相对关系的特定节点的问题。首先应该以当前节点为root 考虑当前子树(左支、右支);如果不在当前子树,则向上考虑:a. 有parent节点,则沿parent节点逐层往上查找 b.无parent节点,则由root节点出发查找给定节点;特别地,对于BST,则只需由root节点单向向下查找。
至于选择DFS还是BFS作为查找手段,需要考虑全局查找的效率来决定

e.g. 1 Find the in-order successor of a given node, with parent links. (CtCI: 4.6)
e.g. 2 Find the in-order successor of a given node in BST, without parent links.

  1. TreeNode *inorderSucc( TreeNode *given, TreeNode *root ){
  2. if(given == NULL )
  3. return NULL;
  4. if(given->right){
  5. given = given->right;
  6. while(given->left)
  7. given = given->right;
  8. return given;
  9. }
  10. TreeNode* succ = NULL;
  11. while(root && root != given){
  12. if( given->val <= root->val ){
  13. succ = root;
  14. root = root->left;
  15. }else{
  16. root = root->right;
  17. }
  18. }
  19. return succ;
  20. }

e.g.3 Find the first common ancestor of two nodes in a binary tree, with parent links.( CtCI 4.7 )
e.g.4 Find the immediate right neighbor of the given node, with parent links given, but without root node.( Ebay interview question)

6.5 树与图的遍历(2)

对树与图的操作未必是以subGraph与subTree为单位的Divide&Conquer,也可能是对node为单位的遍历。通常树与图的问题不外乎这两条思路。

Graph的访问
绝大多数关于Graph的interview question, 都基于简单的DFS或BFS。通常来说,与路径或最短路径相关的问题,用BFS解决;全局的判定问题,可以用DFS。
寻找最短路径的问题,原则上使用Dijkstra算法,特别地,对于unweighted graph,由于从source开始访问的最小深度就等效于到该节点的最短路径,因此Dijkstra算法就退化成BFS,min heap退化成<queue>,并且可以用distance[i] = -1来表示该节点unvisited。
如果需要记录路径,对于DFS可以用vector<int> &path单向记录,对于BFS可以记录每一个节点的前驱节点,即int prev[G->n()],最后用递归来整理vector<int> path

e.g.1 Given a directed graph,find out whether there is a route between two nodes ( CtCI: 4.2 )
e.g.2 Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:
1. Only one letter can be changed at a time
2. Each intermediate word must exist in the dictionary ( CtCI: 18.10, Leetcode: Word Ladder II )

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注