@kpatrick
2019-11-27T02:29:31.000000Z
字数 1430
阅读 433
work vivo
最近两周我这边做了初步的唤醒模型的训练,用的(280, 40)的filterbanks序列数据,最终执行二分类或三分类的任务。目前用分类的准确率Acc来衡量模型的好坏,具体的数值和结果分析在图表中。
\\172.25.70.3\软件平台部$\算法组\语音唤醒\数据集\vivo唤醒词\\172.25.70.3\软件平台部$\算法组\语音唤醒\数据集\primewords_md_2018_set1模型:
/home/vivoadmin/work/project/training/trigger_word/models/cnn-gru-2-class saved-model-100-0.9927.h5.xiaov-Vs-noisesaved-model-100-0.9957.h5.jovi-Vs-noise /home/vivoadmin/work/data/debug_2w_1119Jovi: 20000, Xiaov: 20000, Noise: 10000)Jovi: 2000, Xiaov: 2000, Noise: 1000) 指标:
| - | hi, jovi vs 小v | hi, jovi vs 噪声 | 小v vs 噪声 |
|---|---|---|---|
| GRU | 84%, 86% | - | - |
| CNN-GRU | 93%, 91% | 99%, 99% | 99%+, 99%+ |
模型:
/home/vivoadmin/work/project/training/trigger_word/models/cnn-gru-3-class saved-model-2000-0.9056.h5.2w2w1wsaved-model-2000-0.9388.h5.2w2w4w/home/vivoadmin/work/project/training/trigger_word/models/attention-3-class saved-model-4000-0.9373.h5数据:
Jovi: 20000, Xiaov: 20000, Noise: 10000)Jovi: 2000, Xiaov: 2000, Noise: 1000) Jovi: 20000, Xiaov: 20000, Noise: 40000)Jovi: 2000, Xiaov: 2000, Noise: 6384) 指标
| - | 数据1(小) | 数据2(大) |
|---|---|---|
| CNN-GRU | 90.6%, 90.5% | 91.0%, 93.8% |
| CNN-GRU-Attention | - | 89.2%, 93.7% |