@knight
2016-06-03T17:34:14.000000Z
字数 1823
阅读 2704
NLP
古德-图灵的基本思路是:对于任何一个出现了r次的n元语法,都假设它出现了次,这里有:
其中,是训练语料中恰好出现r次的n元语法的数目。把这个统计计数转化为概率,需要归一化处理,对于统计计数为r的n元语法,其概率为:
其中:
也就是说这个N等于这个分布中最初的计数。这样,样本中所有事件的概率之和为:
因此,有的概率剩余量可以分配给所有未出现事件(r=0)
# snownlp 中good-turing实现
# -*- coding: utf-8 -*-
from __future__ import print_function
from __future__ import division
from math import log, exp
def getz(r, nr):
z = [2*nr[0]/r[1]]
for i in xrange(len(nr)-2):
z.append(2*nr[i+1]/(r[i+2]-r[i]))
z.append(nr[-1]/(r[-1]-r[-2]))
return z
def least_square(x, y): # y=a+bx
meanx = sum(x)/len(x)
meany = sum(y)/len(y)
xy = sum((x[i]-meanx)*(y[i]-meany) for i in range(len(x)))
square = sum((x[i]-meanx)**2 for i in range(len(x)))
b = xy/square
return (meany-b*meanx, b)
def main(dic):
values = sorted(dic.values())
r, nr, prob = [], [], []
for v in values:
if not r or r[-1] != v:
r.append(v)
nr.append(1)
else:
nr[-1] += 1
rr = dict(map(lambda x:list(reversed(x)), enumerate(r)))
total = reduce(lambda x, y:(x[0]*x[1]+y[0]*y[1], 1), zip(nr, r))[0]
z = getz(r, nr)
a, b = least_square(map(lambda x:log(x), r), map(lambda x:log(x), z))
use_good_turing = False
nr.append(exp(a+b*log(r[-1]+1)))
for i in xrange(len(r)):
good_turing = (r[i]+1)*(exp(b*(log(r[i]+1)-log(r[i]))))
turing = (r[i]+1)*nr[i+1]/nr[i] if i+1<len(r) else good_turing
diff = ((((r[i]+1)**2)/nr[i]*nr[i+1]/nr[i]*(1+nr[i+1]/nr[i]))**0.5)*1.65
if not use_good_turing and abs(good_turing-turing)>diff:
prob.append(turing)
else:
use_good_turing = True
prob.append(good_turing)
sump = reduce(lambda x, y:(x[0]*x[1]+y[0]*y[1], 1), zip(nr, prob))[0]
for cnt, i in enumerate(prob):
prob[cnt] = (1-nr[0]/total)*i/sump
return nr[0]/total/total, dict(zip(dic.keys(), map(lambda x:prob[rr[x]], dic.values())))
if __name__ == '__main__':
print(main({1:1,2:1,3:1,4:2,5:2,6:3,7:1,8:2,9:3}))