@knight
2015-06-17T12:53:05.000000Z
字数 4725
阅读 2283
python 机器学习
from numpy import *def loadDataSet(fileName): #general function to parse tab -delimited floatsdataMat = [] #assume last column is target valuefr = open(fileName)for line in fr.readlines():curLine = line.strip().split('\t')fltLine = map(float,curLine) #map all elements to float()dataMat.append(fltLine)return dataMatdef distEclud(vecA, vecB):return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)def randCent(dataSet, k):n = shape(dataSet)[1]centroids = mat(zeros((k,n)))#create centroid matfor j in range(n):#create random cluster centers, within bounds of each dimensionminJ = min(dataSet[:,j])rangeJ = float(max(dataSet[:,j]) - minJ)centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))return centroidsdef kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):m = shape(dataSet)[0]clusterAssment = mat(zeros((m,2)))#create mat to assign data points#to a centroid, also holds SE of each pointcentroids = createCent(dataSet, k)clusterChanged = Truewhile clusterChanged:clusterChanged = Falsefor i in range(m):#for each data point assign it to the closest centroidminDist = inf; minIndex = -1for j in range(k):distJI = distMeas(centroids[j,:],dataSet[i,:])if distJI < minDist:minDist = distJI; minIndex = jif clusterAssment[i,0] != minIndex: clusterChanged = TrueclusterAssment[i,:] = minIndex,minDist**2print centroidsfor cent in range(k):#recalculate centroidsptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this clustercentroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to meanreturn centroids, clusterAssmentdef biKmeans(dataSet, k, distMeas=distEclud):m = shape(dataSet)[0]clusterAssment = mat(zeros((m,2)))centroid0 = mean(dataSet, axis=0).tolist()[0]centList =[centroid0] #create a list with one centroidfor j in range(m):#calc initial ErrorclusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2while (len(centList) < k):lowestSSE = inffor i in range(len(centList)):ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster icentroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimumsseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])print "sseSplit, and notSplit: ",sseSplit,sseNotSplitif (sseSplit + sseNotSplit) < lowestSSE:bestCentToSplit = ibestNewCents = centroidMatbestClustAss = splitClustAss.copy()lowestSSE = sseSplit + sseNotSplitbestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whateverbestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplitprint 'the bestCentToSplit is: ',bestCentToSplitprint 'the len of bestClustAss is: ', len(bestClustAss)centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroidscentList.append(bestNewCents[1,:].tolist()[0])clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSEreturn mat(centList), clusterAssmentimport urllibimport jsondef geoGrab(stAddress, city):apiStem = 'http://where.yahooapis.com/geocode?' #create a dict and constants for the goecoderparams = {}params['flags'] = 'J'#JSON return typeparams['appid'] = 'aaa0VN6k'params['location'] = '%s %s' % (stAddress, city)url_params = urllib.urlencode(params)yahooApi = apiStem + url_params #print url_paramsprint yahooApic=urllib.urlopen(yahooApi)return json.loads(c.read())from time import sleepdef massPlaceFind(fileName):fw = open('places.txt', 'w')for line in open(fileName).readlines():line = line.strip()lineArr = line.split('\t')retDict = geoGrab(lineArr[1], lineArr[2])if retDict['ResultSet']['Error'] == 0:lat = float(retDict['ResultSet']['Results'][0]['latitude'])lng = float(retDict['ResultSet']['Results'][0]['longitude'])print "%s\t%f\t%f" % (lineArr[0], lat, lng)fw.write('%s\t%f\t%f\n' % (line, lat, lng))else: print "error fetching"sleep(1)fw.close()def distSLC(vecA, vecB):#Spherical Law of Cosinesa = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * \cos(pi * (vecB[0,0]-vecA[0,0]) /180)return arccos(a + b)*6371.0 #pi is imported with numpyimport matplotlibimport matplotlib.pyplot as pltdef clusterClubs(numClust=5):datList = []for line in open('places.txt').readlines():lineArr = line.split('\t')datList.append([float(lineArr[4]), float(lineArr[3])])datMat = mat(datList)myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)fig = plt.figure()rect=[0.1,0.1,0.8,0.8]scatterMarkers=['s', 'o', '^', '8', 'p', \'d', 'v', 'h', '>', '<']axprops = dict(xticks=[], yticks=[])ax0=fig.add_axes(rect, label='ax0', **axprops)imgP = plt.imread('Portland.png')ax0.imshow(imgP)ax1=fig.add_axes(rect, label='ax1', frameon=False)for i in range(numClust):ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]markerStyle = scatterMarkers[i % len(scatterMarkers)]ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)plt.show()