@daixuan1996
2015-03-15T23:43:57.000000Z
字数 5501
阅读 1335
Complex Variables and Application
Author: Xuan Dai
Chapter1 Complex Numbers
Sums and Products
- Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to be interpreted as points in the complex plane.
- z=(x,y) x=Rez,y=Imz
- z1=z2 iff Re z1=Re z2 and Im z1=Im z2
- Sum: (x1, y1)+(x2, y2)=(x1+x2, y1+y2)
- Product: (x1, y1)(x2, y2)=(x1x2−y1y2, y1x2+x1y2)
Basic Algebraic Properties
- Commutative Laws: z1+z2=z2+z1, z1z2=z2z1
- Associative Laws: (z1+z2)+z3=z1+(z2+z3), (z1z2)z3=z1(z2z3)
- Distribute Laws: z(z1+z2)=zz1+zz2
- The additive identity is 0 = (0, 0), and the multiplicative identity is 1 = (1, 0).
- z + 0 = z and z * 1 = z
- Addtive inverse: -z = (-x, -y) which satisfies z + (-z) = 0
- Multiplicative inverse: z−1=(xx2+y2, −yx2+y2) which satisfies z∗z−1 = 1
Further Properties
- If z1z2=0, then at least one of the factors z1 and z2 is 0.
- Subtraction: z1−z2=z1+(−z2)
- Division:
z1z2=z1z−1 (z2≠0)
- z1−z2=(x1−x2, y1−y2)
z1z2=(x1x2+y1y2x22+y22, y1x2−x1y2x22+y22)
- An easy way to remember:
z1z2=(x1+iy1)(x2−iy2)(x2+iy2)(x2−iy2)
Note Note that (x2+iy2)(x2−iy2)=x22+y22∈R
z1+z2z3=(z1+z2)z−13=z1z−13+z2z−13=z1z3+z2z3
1z=z−1
z1z2=z1(1z2)
(1z1)(1z2)=z−11z−12=(z1z2)−1=1z1z2
(z1z3)(z2z4)=z1z2z3z4 (z3≠0, z4≠0)
(z1+z2)n=∑k=0nCknzk1zn−k2
Vectors and Moduli
- Any complex number is associated a vector from the origin to the point (x, y)
- |z|=x2+y2−−−−−−√ and |z1−z2|=(x1−x2)2+(y1−y2)2−−−−−−−−−−−−−−−−−−√
- |z|2=(Re z)2+(Im z)2
- Re z≤|Re z|≤|z| and Im z≤|Im z|≤|z|
- Triangle inequality: |z1+z2|≤|z1|+|z2|
- |z1+z2|≥||z1|−|z2||
- |z1+z2|≥|z1|−|z2|
- ||z1|−|z2||≤|z1±z2|≤|z1|+|z2|
Complex Conjugates(共轭负数)
- z¯=x−iy
- z1+z2¯=z1¯+z2¯
- z1−z2¯=z1¯−z2¯
- z1z2¯=z1¯z2¯
- (z1z2)¯=z1¯z2¯ (z2≠0)
- Re z=z+z¯2 and Im z=z−z¯2i
- zz¯=|z|2
- |z1z2|=|z1||z2| ⇒ |zn|=|z|n
- |fracz1z2|=frac|z1||z2| (z2≠0)
Exponential Form
- Polar form: z = r(cosθ+isinθ)
- arg z = Arg z + 2nπ (arg z: 辐角θ, Arg z: 辐角主值Θ)
- Euler's formula: eiθ=cosθ+isinθ (可用泰勒展开式证明~)
- z=reiθ
- z=Reiθ and z=z0+Reiθ
Products and Powers in Exponential Form
- z1z2=r1eiθ1r2eiθ2=r1r2eiθ1eiθ2=(r1r2)ei(θ1+θ2)
- z1z2=r1r2ei(θ1−θ2)
- z−1=1re−iθ
- zn=rneinθ
- (eiθ)n=eiθn
- The de Moivre's formula: (cosθ+isinθ)n=cosnθ+isinnθ
Arguments of Products and Quotients
- z1z2=(r1r2)ei(θ1+θ2)
- arg(z1z2)=arg z1+arg z2
- arg (z−12)=−arg z2
- $arg(\frac{z_1}{z_2}) = arg\ z_1 - arg\ z_2
Roots of Complex Numbers
Examples
Regions in The Complex Plane