[关闭]
@cloverwang 2016-06-22T15:37:27.000000Z 字数 6924 阅读 2328

大整数加减运算的C语言实现

大整数加减 C


一. 问题提出

培训老师给出一个题目:用C语言实现一个大整数计算器。初步要求支持大整数的加、减运算,例如8888888888888+1112=88888888900001000000000000-999999999999=1

C语言中,整型变量所能存储的最宽数据为0xFFFF FFFF,对应的无符号数为4294967295,即无法保存超过10位的整数。注意,此处"10位"指数学中的10个数字,并非计算机科学中的10比特。浮点类型double虽然可以存储更多位数的整数,但一方面常数字面量宽度受编译器限制,另一方面通过浮点方式处理整数精度较低。例如:

  1. double a = 1377083362513770833626.0, b=1585054852315850548524.0;
  2. printf("res = %.0f\n", a+b);

输出为res = 2962138214829621510144,而正确值应为2962138214829621382150。

既然基本数据类型无法表示大整数,那么只能自己设计存储方式来实现大整数的表示和运算。通常,输入的大整数为字符串形式。因此,常见的思路是将大整数字符串转化为数组,再用数组模拟大整数的运算。具体而言,先将字符串中的数字字符顺序存入一个较大的整型数组,其元素代表整数的某一位或某几位(如万进制);然后根据运算规则操作数组元素,以模拟整数运算;最后,将数组元素顺序输出。

数组方式操作方便,实现简单,缺点是空间利用率和执行效率不高。也可直接操作大整数字符串,从字符串末尾逆向计算。本文实现就采用这种方式。

二. 代码实现

首先,给出几个宏定义和运算结构:

  1. #include<stdio.h>
  2. #include<stdlib.h>
  3. #include<string.h>
  4. #define ADD_THRES (sizeof("4294967295")-2) //两个9位整数相加不会溢出
  5. #define MUL_THRES (sizeof("65535")-2) //两个4位整数相乘不会溢出
  6. #define OTH_THRES (sizeof("4294967295")-1) //两个10位整数相减或相除不会溢出
  7. typedef struct{
  8. char *leftVal;
  9. char *rightVal;
  10. char operator;
  11. }MATH_OPER;

基于上述定义,以下将依次给出运算代码的实现。

加法运算主要关注相加过程中的进位问题:

  1. void Addition(char *leftVal, char *rightVal,
  2. char *resBuf, unsigned int resbufLen) {
  3. unsigned int leftLen = strlen(leftVal);
  4. unsigned int rightLen = strlen(rightVal);
  5. unsigned char isLeftLonger = (leftLen>=rightLen) ? 1 : 0;
  6. unsigned int longLen = isLeftLonger ? leftLen : rightLen;
  7. if(resbufLen < longLen) { //possible carry + string terminator
  8. fprintf(stderr, "Not enough space for result(cur:%u)!\n", resbufLen);
  9. return;
  10. }
  11. char *longAddend = isLeftLonger ? leftVal : rightVal;
  12. char *shortAddend = isLeftLonger ? rightVal : leftVal;
  13. unsigned int diffLen = isLeftLonger ? (leftLen-rightLen) : (rightLen-leftLen);
  14. //a carry might be generated from adding the most significant digit
  15. if((leftLen == rightLen) && (leftVal[0]-'0'+rightVal[0]-'0' >= 9))
  16. resBuf += 1;
  17. unsigned int carry = 0;
  18. int i = longLen-1;
  19. for(; i >= 0; i--) {
  20. unsigned int leftAddend = longAddend[i] - '0';
  21. unsigned int rightAddend = (i<diffLen) ? 0 : shortAddend[i-diffLen]-'0';
  22. unsigned int digitSum = leftAddend + rightAddend + carry;
  23. resBuf[i] = digitSum % 10 + '0';
  24. carry = (digitSum >= 10) ? 1 : 0;
  25. }
  26. if(carry == 1) {
  27. resBuf -= 1;
  28. resBuf[0] = '1';
  29. }
  30. else if(leftVal[0]-'0'+rightVal[0]-'0' == 9) {
  31. resBuf -= 1;
  32. resBuf[0] = ' '; //fail to generate a carry
  33. }
  34. }

注意第33~36行的处理,当最高位未按期望产生进位时,原来为0的resBuf[0]被置为空格字符,否则将无法输出运算结果。当然,也可将resBuf整体前移一个元素。

减法运算相对复杂,需要根据被减数和减数的大小调整运算顺序。若被减数小于减数("11-111"或"110-111"),则交换被减数和减数后再做正常的减法运算,并且结果需添加负号前缀。此外,还需关注借位问题。

  1. void Subtraction(char *leftVal, char *rightVal,
  2. char *resBuf, unsigned int resbufLen) {
  3. int cmpVal = strcmp(leftVal, rightVal);
  4. if(!cmpVal) {
  5. resBuf[0] = '0';
  6. return;
  7. }
  8. unsigned int leftLen = strlen(leftVal);
  9. unsigned int rightLen = strlen(rightVal);
  10. unsigned char isLeftLonger = 0;
  11. if((leftLen > rightLen) || //100-10
  12. (leftLen == rightLen && cmpVal > 0)) //100-101
  13. isLeftLonger = 1;
  14. unsigned int longLen = isLeftLonger ? leftLen : rightLen;
  15. if(resbufLen <= longLen) { //string terminator
  16. fprintf(stderr, "Not enough space for result(cur:%u)!\n", resbufLen);
  17. return;
  18. }
  19. char *minuend = isLeftLonger ? leftVal : rightVal;
  20. char *subtrahend = isLeftLonger ? rightVal : leftVal;
  21. unsigned int diffLen = isLeftLonger ? (leftLen-rightLen) : (rightLen-leftLen);
  22. //a borrow will be generated from subtracting the most significant digit
  23. if(!isLeftLonger) {
  24. resBuf[0] = '-';
  25. resBuf += 1;
  26. }
  27. unsigned int borrow = 0;
  28. int i = longLen-1;
  29. for(; i >= 0; i--)
  30. {
  31. unsigned int expanSubtrahend = (i<diffLen) ? '0' : subtrahend[i-diffLen];
  32. int digitDif = minuend[i] - expanSubtrahend - borrow;
  33. borrow = (digitDif < 0) ? 1 : 0;
  34. resBuf[i] = digitDif + borrow*10 + '0';
  35. //printf("[%d]Dif=%d=%c-%c-%d -> %c\n", i, digitDif, minuend[i], expanSubtrahend, borrow, resBuf[i]);
  36. }
  37. //strip leading '0' characters
  38. int iSrc = 0, iDst = 0, isStripped = 0;
  39. while(resBuf[iSrc] !='\0') {
  40. if(isStripped) {
  41. resBuf[iDst] = resBuf[iSrc];
  42. iSrc++; iDst++;
  43. }
  44. else if(resBuf[iSrc] != '0') {
  45. resBuf[iDst] = resBuf[iSrc];
  46. iSrc++; iDst++;
  47. isStripped = 1;
  48. }
  49. else
  50. iSrc++;
  51. }
  52. resBuf[iDst] = '\0';
  53. }

对于Addition()和Subtraction()函数,设计测试用例如下:

  1. #include<assert.h>
  2. #define ASSERT_ADD(_add1, _add2, _sum) do{\
  3. char resBuf[100] = {0}; \
  4. Addition(_add1, _add2, resBuf, sizeof(resBuf)); \
  5. assert(!strcmp(resBuf, _sum)); \
  6. }while(0)
  7. #define ASSERT_SUB(_minu, _subt, _dif) do{\
  8. char resBuf[100] = {0}; \
  9. Subtraction(_minu, _subt, resBuf, sizeof(resBuf)); \
  10. assert(!strcmp(resBuf, _dif)); \
  11. }while(0)
  12. void VerifyOperation(void) {
  13. ASSERT_ADD("22", "1686486458", "1686486480");
  14. ASSERT_ADD("8888888888888", "1112", "8888888890000");
  15. ASSERT_ADD("1234567890123", "1", "1234567890124");
  16. ASSERT_ADD("1234567890123", "3333333333333", "4567901223456");
  17. ASSERT_ADD("1234567890123", "9000000000000", "10234567890123");
  18. ASSERT_ADD("1234567890123", "8867901223000", "10102469113123");
  19. ASSERT_ADD("1234567890123", "8000000000000", " 9234567890123");
  20. ASSERT_ADD("1377083362513770833626", "1585054852315850548524", "2962138214829621382150");
  21. ASSERT_SUB("10012345678890", "1", "10012345678889");
  22. ASSERT_SUB("1", "10012345678890", "-10012345678889");
  23. ASSERT_SUB("10012345678890", "10012345678891", "-1");
  24. ASSERT_SUB("10012345678890", "10012345686945", "-8055");
  25. ASSERT_SUB("1000000000000", "999999999999", "1");
  26. }

考虑到语言内置的运算效率应该更高,因此在不可能产生溢出时尽量选用内置运算。CalcOperation()函数便采用这一思路:

  1. void CalcOperation(MATH_OPER *mathOper, char *resBuf, unsigned int resbufLen) {
  2. unsigned int leftLen = strlen(mathOper->leftVal);
  3. unsigned int rightLen = strlen(mathOper->rightVal);
  4. switch(mathOper->operator) {
  5. case '+':
  6. if(leftLen <= ADD_THRES && rightLen <= ADD_THRES)
  7. snprintf(resBuf, resbufLen, "%d",
  8. atoi(mathOper->leftVal) + atoi(mathOper->rightVal));
  9. else
  10. Addition(mathOper->leftVal, mathOper->rightVal, resBuf, resbufLen);
  11. break;
  12. case '-':
  13. if(leftLen <= OTH_THRES && rightLen <= OTH_THRES)
  14. snprintf(resBuf, resbufLen, "%d",
  15. atoi(mathOper->leftVal) - atoi(mathOper->rightVal));
  16. else
  17. Subtraction(mathOper->leftVal, mathOper->rightVal, resBuf, resbufLen);
  18. break;
  19. case '*':
  20. if(leftLen <= MUL_THRES && rightLen <= MUL_THRES)
  21. snprintf(resBuf, resbufLen, "%d",
  22. atoi(mathOper->leftVal) * atoi(mathOper->rightVal));
  23. else
  24. break; //Multiplication: product = multiplier * multiplicand
  25. break;
  26. case '/':
  27. if(leftLen <= OTH_THRES && rightLen <= OTH_THRES)
  28. snprintf(resBuf, resbufLen, "%d",
  29. atoi(mathOper->leftVal) / atoi(mathOper->rightVal));
  30. else
  31. break; //Division: quotient = dividend / divisor
  32. break;
  33. default:
  34. break;
  35. }
  36. return;
  37. }

注意,大整数的乘法和除法运算尚未实现,因此相应代码分支直接返回。

最后,完成入口函数:

  1. int main(void) {
  2. VerifyOperation();
  3. char leftVal[100] = {0}, rightVal[100] = {0}, operator='+';
  4. char resBuf[1000] = {0};
  5. //As you see, basically any key can quit:)
  6. printf("Enter math expression(press q to quit): ");
  7. while(scanf(" %[0-9] %[+-*/] %[0-9]", leftVal, &operator, rightVal) == 3) {
  8. MATH_OPER mathOper = {leftVal, rightVal, operator};
  9. memset(resBuf, 0, sizeof(resBuf));
  10. CalcOperation(&mathOper, resBuf, sizeof(resBuf));
  11. printf("%s %c %s = %s\n", leftVal, operator, rightVal, resBuf);
  12. printf("Enter math expression(press q to quit): ");
  13. }
  14. return 0;
  15. }

上述代码中,scanf()函数的格式化字符串风格类似正则表达式。其详细介绍参见《sscanf的字符串格式化用法》一文。

三. 效果验证

将上节代码存为BigIntOper.c文件。测试结果如下:

  1. [wangxiaoyuan_@localhost ~]$ gcc -Wall -o BigIntOper BigIntOper.c
  2. [wangxiaoyuan_@localhost ~]$ ./BigIntOper
  3. Enter math expression(press q to quit): 100+901
  4. 100 + 901 = 1001
  5. Enter math expression(press q to quit): 100-9
  6. 100 - 9 = 91
  7. Enter math expression(press q to quit): 1234567890123 + 8867901223000
  8. 1234567890123 + 8867901223000 = 10102469113123
  9. Enter math expression(press q to quit): 1377083362513770833626 - 1585054852315850548524
  10. 1377083362513770833626 - 1585054852315850548524 = -207971489802079714898
  11. Enter math expression(press q to quit): q
  12. [wangxiaoyuan_@localhost ~]$

通过内部测试用例和外部人工校验,可知运算结果正确无误。

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注