@a604572782
2016-02-04T15:33:10.000000Z
字数 9678
阅读 2431
Async
c#
在.net4.0以后异步操作,并行计算变得异常简单,但是由于公司项目开发基于.net3.5所以无法用到4.0的并行计算以及Task等异步编程。因此,为了以后更方便的进行异步方式的开发,我根据.net的使用方式封装了异步编程框架,通过BeginInvoke、EndInvoke的方式实现异步编程。
整个框架包括四个部分
1. 基类抽象Opeartor
我把每个异步执行过程称为一个Operate,因此需要一个Opeartor去执行
2. FuncAsync
异步的Func
3. ActionAsync
异步的Action
4. Asynchorus
对ActionAsync和FuncAsync的封装
Operator
是一个抽象类,实现了IOperationAsync
和IContinueWithAsync
两个接口。
IOperationAsync
实现了异步操作,IContinueWithAsync
实现了类似于Task的ContinueWith方法,在当前异步操作完成后继续进行的操作
public interface IOperationAsync
{
IAsyncResult Invoke();
void Wait();
void CompletedCallBack(IAsyncResult ar);
void CatchException(Exception exception);
}
Invoke()
:异步方法的调用Wait()
:等待异步操作执行CompletedCallBack()
:操作完成回调CatchException()
:抓取异常
public interface IContinueWithAsync
{
Operator Previous { get; set; }
Operator Next { get; set; }
Operator ContinueWithAsync(Action action);
Operator ContinueWithAsync<TParameter>(Action<TParameter> action, TParameter parameter);
}
Previous
:前一个操作Next
:下一个操作ContinueWithAsync()
:异步继续操作
public abstract class Operator : IOperationAsync, IContinueWithAsync
{
public IAsyncResult Middle;
public readonly string Id;
public Exception Exception { get; private set; }
public Operator Previous { get; set; }
public Operator Next { get; set; }
protected Operator()
{
Id = Guid.NewGuid().ToString();
}
public abstract IAsyncResult Invoke();
protected void SetAsyncResult(IAsyncResult result)
{
this.Middle = result;
}
public virtual void Wait()
{
if (!Middle.IsCompleted) Middle.AsyncWaitHandle.WaitOne();
}
public virtual void CompletedCallBack(IAsyncResult ar)
{
}
public void CatchException(Exception exception)
{
this.Exception = exception;
}
protected Operator ContinueAsync()
{
if (Next != null) Next.Invoke();
return Next;
}
public virtual Operator ContinueWithAsync(Action action)
{
Next = new ActionAsync(action);
Next.Previous = this;
return Next;
}
public virtual Operator ContinueWithAsync<TParameter>(Action<TParameter> action, TParameter parameter)
{
Next = new ActionAsync<TParameter>(action, parameter);
Next.Previous = this;
return Next;
}
public virtual Operator ContinueWithAsync<TResult>(Func<TResult> func)
{
Next = new FuncAsync<TResult>();
Next.Previous = this;
return Next;
}
public virtual Operator ContinueWithAsync<TParameter, TResult>(Func<TParameter, TResult> func,
TParameter parameter)
{
Next = new FuncAsync<TParameter, TResult>(func, parameter);
Next.Previous = this;
return Next;
}
}
public class ActionAsync : Operator
{
private readonly Action _action;
protected ActionAsync()
{
}
public ActionAsync(Action action)
: this()
{
this._action = action;
}
public override IAsyncResult Invoke()
{
var middle = _action.BeginInvoke(CompletedCallBack, null);
SetAsyncResult(middle);
return middle;
}
public override void CompletedCallBack(IAsyncResult ar)
{
try
{
_action.EndInvoke(ar);
}
catch (Exception exception)
{
this.CatchException(exception);
}
ContinueAsync();
}
}
public class ActionAsync<T> : ActionAsync
{
public T Result;
private readonly Action<T> _action1;
protected readonly T Parameter1;
public ActionAsync()
{
}
public ActionAsync(T parameter)
{
this.Parameter1 = parameter;
}
public ActionAsync(Action<T> action, T parameter)
{
this._action1 = action;
this.Parameter1 = parameter;
}
public override IAsyncResult Invoke()
{
var result = _action1.BeginInvoke(Parameter1, CompletedCallBack, null);
SetAsyncResult(result);
return result;
}
public override void CompletedCallBack(IAsyncResult ar)
{
try
{
_action1.EndInvoke(ar);
}
catch (Exception exception)
{
this.CatchException(exception);
}
ContinueAsync();
}
}
FuncAsync实现了IFuncOperationAsync接口
public interface IFuncOperationAsync<T>
{
void SetResult(T result);
T GetResult();
}
SetResult(T result)
:异步操作完成设置返回值GetResult()
:获取返回值
public class FuncAsync<TResult> : Operator, IFuncOperationAsync<TResult>
{
private TResult _result;
public TResult Result
{
get
{
if (!Middle.IsCompleted || _result == null)
{
_result = GetResult();
}
return _result;
}
}
private readonly Func<TResult> _func1;
public FuncAsync()
{
}
public FuncAsync(Func<TResult> func)
{
this._func1 = func;
}
public override IAsyncResult Invoke()
{
var result = _func1.BeginInvoke(CompletedCallBack, null);
SetAsyncResult(result);
return result;
}
public override void CompletedCallBack(IAsyncResult ar)
{
try
{
var result = _func1.EndInvoke(ar);
SetResult(result);
}
catch (Exception exception)
{
this.CatchException(exception);
SetResult(default(TResult));
}
ContinueAsync();
}
public virtual TResult GetResult()
{
Wait();
return this._result;
}
public void SetResult(TResult result)
{
_result = result;
}
}
public class FuncAsync<T1, TResult> : FuncAsync<TResult>
{
protected readonly T1 Parameter1;
private readonly Func<T1, TResult> _func2;
public FuncAsync(Func<T1, TResult> action, T1 parameter1)
: this(parameter1)
{
this._func2 = action;
}
protected FuncAsync(T1 parameter1)
: base()
{
this.Parameter1 = parameter1;
}
public override IAsyncResult Invoke()
{
var result = _func2.BeginInvoke(Parameter1, CompletedCallBack, null);
SetAsyncResult(result);
return result;
}
public override void CompletedCallBack(IAsyncResult ar)
{
try
{
var result = _func2.EndInvoke(ar);
SetResult(result);
}
catch (Exception exception)
{
CatchException(exception);
SetResult(default(TResult));
}
ContinueAsync();
}
}
ActionAsync和FuncAsync为异步操作打下了基础,接下来最重要的工作就是通过这两个类执行我们的异步操作,为此我封装了一个异步操作类
主要封装了以下几个部分:
1. WaitAll(IEnumerable<Operator> operations)
:等待所有操作执行完毕
2. WaitAny(IEnumerable<Operator> operations)
:等待任意操作执行完毕
3. ActionAsync
4. FuncAsync
5. ContinueWithAction
6. ContinueWithFunc
后面四个包含若干个重载,这里只是笼统的代表一个类型的方法
public static void WaitAll(IEnumerable<Operator> operations)
{
foreach (var @operator in operations)
{
@operator.Wait();
}
}
public static void WaitAny(IEnumerable<Operator> operations)
{
while (operations.All(o => !o.Middle.IsCompleted))
Thread.Sleep(100);
}
等待时间可以自定义
public static Operator Invoke(Action action)
{
Operator operation = new ActionAsync(action);
operation.Invoke();
return operation;
}
public static Operator Invoke<T>(Action<T> action, T parameter)
{
Operator operation = new ActionAsync<T>(action, parameter);
operation.Invoke();
return operation;
}
public static Operator Invoke<T1, T2>(Action<T1, T2> action, T1 parameter1, T2 parameter2)
{
Operator operation = new ActionAsync<T1, T2>(action, parameter1, parameter2);
operation.Invoke();
return operation;
}
public static Operator Invoke<TResult>(Func<TResult> func)
{
Operator operation = new FuncAsync<TResult>(func);
operation.Invoke();
return operation;
}
public static Operator Invoke<TParameter, TResult>(Func<TParameter, TResult> func, TParameter parameter)
{
TParameter param = parameter;
Operator operation = new FuncAsync<TParameter, TResult>(func, param);
operation.Invoke();
return operation;
}
public static Operator Invoke<T1, T2, TResult>(Func<T1, T2, TResult> func, T1 parameter1, T2 parameter2)
{
Operator operation = new FuncAsync<T1, T2, TResult>(func, parameter1, parameter2);
operation.Invoke();
return operation;
}
public static Operator ContinueWithAsync(IEnumerable<Operator>operators, Action action)
{
return Invoke(WaitAll, operators)
.ContinueWithAsync(action);
}
public static Operator ContinueWithAsync<TParameter>(IEnumerable<Operator> operators, Action<TParameter> action, TParameter parameter)
{
return Invoke(WaitAll, operators)
.ContinueWithAsync(action, parameter);
}
public static Operator ContinueWithAsync<TResult>(IEnumerable<Operator> operators,Func<TResult> func)
{
return Invoke(WaitAll, operators)
.ContinueWithAsync(func);
}
public static Operator ContinueWithAsync<TParameter, TResult>(IEnumerable<Operator> operators,
Func<TParameter, TResult> func, TParameter parameter)
{
return Invoke(WaitAll, operators)
.ContinueWithAsync(func, parameter);
}
这里有个bug当调用
ContinueWithAsync
后无法调用Wait
等待,本来Wait
需要从前往后等待每个异步操作,但是测试了下不符合预期结果。不过理论上来说应该无需这样操作,ContinueWithAsync
只是为了当上一个异步操作执行完毕时继续执行的异步操作,若要等待,那不如两个操作放到一起,最后再等待依然可以实现。
前面的都是单步异步操作的调用,若需要对某集合进行某个方法的异步操作,可以foreach遍历
public void ForeachAsync(IEnumerbale<string> parameters)
{
foreach(string p in parameters)
{
Asynchronous.Invoke(Tast,p);
}
}
public void Test(string parameter)
{
//TODO:做一些事
}
每次都需要去手写foreach,比较麻烦,因此实现类似于PLinq的并行计算方法实在有必要,不过有一点差别,PLinq是采用多核CPU进行并行计算,而我封装的仅仅遍历集合进行异步操作而已
public static IEnumerable<Operator> Foreach<TParameter>(IEnumerable<TParameter> items, Action<TParameter> action)
{
return items.Select(t => Invoke(action, t)).ToList();
}
public static IEnumerable<Operator> Foreach<TParameter, TResult>(IEnumerable<TParameter> items, Func<TParameter, TResult> func)
{
return items.Select(parameter => Invoke(func, parameter)).ToList();
}
public void DoSomeThing()
{
//TODO:
}
通过Asynchronous.Invoke(DoSomeThing)
执行
public void DoSomeThing(string parameter)
{
//TODO:
}
通过Asynchronous.Invoke(DoSomeThing,parameter)
执行
public string DoSomeThing()
{
//TODO:
}
通过Asynchronous.Invoke(()=>DoSomeThing())
执行
public string DoSomeThing(string parameter)
{
//TODO:
}
通过Asynchronous.Invoke(()=>DoSomeThing(parameter))
执行,或者也可以传入参数通过Asynchronous.Invoke(p=>DoSomeThing(p),parameter)
public void Test
{
int[] parameters = {1,2,3,4,5};
Asynchronous.Foreach(parameters,Console.WriteLine);
}
public void Test
{
int[] parameters = {1,2,3,4,5};
var operators = Asynchronous.Foreach(parameters,p=> p*2);
Asynchrous.WaitAll(operators);
Asynchronous.Foreach(operators.Cast<FuncAsync<int,int>>(),
p=> Console.WriteLine(p.Result));
}
首先将集合每个值扩大2倍,然后输出
public void Test
{
int[] parameters = {1,2,3,4,5};
var operators = Asynchronous.Foreach(parameters,p=> p*2);
Asynchrous.ContinueWithAsync(operators,Console.WriteLine,"执行完成");
}
public void Test
{
int[] parameters = {1,2,3,4,5};
var operators = Asynchronous.Foreach(parameters,p=> p*2);
Asynchronous.Foreach(operators,o=>{
o.ContinueWithAsync(()={
//每个元素执行完时执行
if(o.Exception != null)
{
//之前执行时产生未处理的异常,这里可以捕获到
}
});
});
}
public void Chain()
{
Asynchronous.Invoke(Console.WriteLine,1)
.ContinueWithAsync(Console.WriteLine,2)
.ContinueWithAsync(Console.WriteLine,3)
}
这样会按步骤输出1,2,3
以上只是列出了部分重载方法,其他重载方法无非就是加参数,本质实际是一样的,具体可以下载源码。我还封装了for方法,但是感觉没什么用,而且也从没有用到过,这里不再提
通过以上的封装,已经能完成日常大部分的操作,调用还是比较方便的。
本文发布至作业部落