@ZCDHJ
2019-09-15T03:48:33.000000Z
字数 3037
阅读 787
未分类
在以下几种情况会出现不合法:1.多个最小值相同的区间无交集或交集不唯一,因为没有重复的数字。2.在几个最小值较大区间的并集中出现了一个最小值较小的子区间,很显然不行。二分答案第一个出现矛盾的位置,将其及其前面的区间按最小值降序排序,然后用一颗支持区间覆盖操作的线段树来维护错误情况 2。
#include <iostream>
#include <cstdio>
#include <algorithm>
const int MAXN = 1e6;
const int MAXQ = 25000;
int n, Q;
struct Range {
int l, r, val;
Range() : l(0), r(0), val(0) {}
friend bool operator< (const Range &lhs, const Range &rhs) {
return lhs.val > rhs.val;
}
} a[MAXQ | 1], b[MAXQ | 1];
inline int read() {
register int x = 0;
register char ch = getchar();
while (!isdigit(ch)) ch = getchar();
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
return x;
}
namespace SegTree {
struct Node {
int sumv, lazy;
Node *ch[2];
Node() : sumv(0), lazy(0) {
ch[0] = ch[1] = NULL;
}
} *root;
void push_down(Node *o, int l, int r) {
if (o -> lazy) {
int mid = (l + r) >> 1;
o -> ch[0] -> sumv = (mid - l + 1);
o -> ch[0] -> lazy = 1;
o -> ch[1] -> sumv = (r - mid);
o -> ch[1] -> lazy = 1;
o -> lazy = 0;
}
}
void push_up(Node *o) {
o -> sumv = o -> ch[0] -> sumv + o -> ch[1] -> sumv;
}
void build(Node *&o, int l, int r) {
if (o == NULL) o = new Node;
else o -> sumv = o -> lazy = 0;
if (l == r) return;
int mid = (l + r) >> 1;
build(o -> ch[0], l, mid);
build(o -> ch[1], mid + 1, r);
}
void modify(Node *&o, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) {
o -> sumv = (r - l + 1);
o -> lazy = 1;
return;
}
push_down(o, l, r);
int mid = (l + r) >> 1;
if (ql <= mid) modify(o -> ch[0], l, mid, ql, qr);
if (mid < qr) modify(o -> ch[1], mid + 1, r, ql, qr);
push_up(o);
}
int query(Node *&o, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) return o -> sumv;
push_down(o, l, r);
int mid = (l + r) >> 1, res = 0;
if (ql <= mid) res = query(o -> ch[0], l, mid, ql, qr);
if (mid < qr) res += query(o -> ch[1], mid + 1, r, ql, qr);
return res;
}
}
using namespace SegTree;
bool check(int lim) {
build(root, 1, n);
for (int i = 1; i <= lim; ++i) b[i] = a[i];
std::sort(b + 1, b + 1 + lim);
for (int i = 1, j; i <= lim; i = j) {
for (j = i; j <= lim && b[j].val == b[i].val; ++j);
int l1 = b[i].l, l2 = b[i].l, r1 = b[i].r, r2 = b[i].r;
for (int k = i + 1; k < j; ++k) {
l1 = std::min(l1, b[k].l);
r1 = std::max(r1, b[k].r);
l2 = std::max(l2, b[k].l);
r2 = std::min(r2, b[k].r);
}
if (l2 > r2) return false;
if (query(root, 1, n, l2, r2) == (r2 - l2 + 1)) return false;
modify(root, 1, n, l1, r1);
}
return true;
}
int main() {
n = read();
Q = read();
for (int i = 1; i <= Q; ++i) {
a[i].l = read();
a[i].r = read();
a[i].val = read();
}
int l = 1, r = Q, mid, ans = 0;
while (l <= r) {
mid = (l + r) >> 1;
if (!check(mid)) {
r = mid - 1;
ans = mid;
} else l = mid + 1;
}
printf("%d\n", ans);
return 0;
}
每条不合法的路径都可以与一条从点 出发的路径相对应,那么用总方案数减去不合法的方案数即 ,使用卢卡斯定理计算。
考虑答案其实就是求 ,使用线性筛计算 。
细节:对于每个数计算其最小质因子出现的次数(记为 cnt),在线性筛的时候如果 ,则 ,,否则 ,。
#include <iostream>
#include <cstdio>
const int MAXN = 1e7;
const int MOD = 998244353;
int n, tot;
int minSum[MAXN | 1], ans[MAXN | 1], prime[MAXN | 1];
inline int read() {
register int x = 0;
register char ch = getchar();
while (!isdigit(ch)) ch = getchar();
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
return x;
}
int main() {
n = read();
int res = 0;
for (int i = 2; i <= n; ++i) {
if (ans[i] == 0) prime[++tot] = i, ans[i] = 2, minSum[i] = 1;
for (int j = 1; j <= tot && i * prime[j] <= n; ++j) {
if (i % prime[j] == 0) {
minSum[i * prime[j]] = minSum[i] + 1;
ans[i * prime[j]] = ans[i] * (minSum[i] + 2) / (minSum[i] + 1);
break;
} else {
minSum[i * prime[j]] = 1;
ans[i * prime[j]] = ans[i] * 2;
}
}
res += (1LL * (ans[i] * (ans[i] - 1)) / 2) % MOD;
res %= MOD;
}
printf("%d\n", res);
}
太神仙了,不改了