[关闭]
@ZCDHJ 2019-09-15T03:48:33.000000Z 字数 3037 阅读 787

2019-9-14

未分类


bales

在以下几种情况会出现不合法:1.多个最小值相同的区间无交集或交集不唯一,因为没有重复的数字。2.在几个最小值较大区间的并集中出现了一个最小值较小的子区间,很显然不行。二分答案第一个出现矛盾的位置,将其及其前面的区间按最小值降序排序,然后用一颗支持区间覆盖操作的线段树来维护错误情况 2。

  1. #include <iostream>
  2. #include <cstdio>
  3. #include <algorithm>
  4. const int MAXN = 1e6;
  5. const int MAXQ = 25000;
  6. int n, Q;
  7. struct Range {
  8. int l, r, val;
  9. Range() : l(0), r(0), val(0) {}
  10. friend bool operator< (const Range &lhs, const Range &rhs) {
  11. return lhs.val > rhs.val;
  12. }
  13. } a[MAXQ | 1], b[MAXQ | 1];
  14. inline int read() {
  15. register int x = 0;
  16. register char ch = getchar();
  17. while (!isdigit(ch)) ch = getchar();
  18. while (isdigit(ch)) {
  19. x = x * 10 + ch - '0';
  20. ch = getchar();
  21. }
  22. return x;
  23. }
  24. namespace SegTree {
  25. struct Node {
  26. int sumv, lazy;
  27. Node *ch[2];
  28. Node() : sumv(0), lazy(0) {
  29. ch[0] = ch[1] = NULL;
  30. }
  31. } *root;
  32. void push_down(Node *o, int l, int r) {
  33. if (o -> lazy) {
  34. int mid = (l + r) >> 1;
  35. o -> ch[0] -> sumv = (mid - l + 1);
  36. o -> ch[0] -> lazy = 1;
  37. o -> ch[1] -> sumv = (r - mid);
  38. o -> ch[1] -> lazy = 1;
  39. o -> lazy = 0;
  40. }
  41. }
  42. void push_up(Node *o) {
  43. o -> sumv = o -> ch[0] -> sumv + o -> ch[1] -> sumv;
  44. }
  45. void build(Node *&o, int l, int r) {
  46. if (o == NULL) o = new Node;
  47. else o -> sumv = o -> lazy = 0;
  48. if (l == r) return;
  49. int mid = (l + r) >> 1;
  50. build(o -> ch[0], l, mid);
  51. build(o -> ch[1], mid + 1, r);
  52. }
  53. void modify(Node *&o, int l, int r, int ql, int qr) {
  54. if (ql <= l && r <= qr) {
  55. o -> sumv = (r - l + 1);
  56. o -> lazy = 1;
  57. return;
  58. }
  59. push_down(o, l, r);
  60. int mid = (l + r) >> 1;
  61. if (ql <= mid) modify(o -> ch[0], l, mid, ql, qr);
  62. if (mid < qr) modify(o -> ch[1], mid + 1, r, ql, qr);
  63. push_up(o);
  64. }
  65. int query(Node *&o, int l, int r, int ql, int qr) {
  66. if (ql <= l && r <= qr) return o -> sumv;
  67. push_down(o, l, r);
  68. int mid = (l + r) >> 1, res = 0;
  69. if (ql <= mid) res = query(o -> ch[0], l, mid, ql, qr);
  70. if (mid < qr) res += query(o -> ch[1], mid + 1, r, ql, qr);
  71. return res;
  72. }
  73. }
  74. using namespace SegTree;
  75. bool check(int lim) {
  76. build(root, 1, n);
  77. for (int i = 1; i <= lim; ++i) b[i] = a[i];
  78. std::sort(b + 1, b + 1 + lim);
  79. for (int i = 1, j; i <= lim; i = j) {
  80. for (j = i; j <= lim && b[j].val == b[i].val; ++j);
  81. int l1 = b[i].l, l2 = b[i].l, r1 = b[i].r, r2 = b[i].r;
  82. for (int k = i + 1; k < j; ++k) {
  83. l1 = std::min(l1, b[k].l);
  84. r1 = std::max(r1, b[k].r);
  85. l2 = std::max(l2, b[k].l);
  86. r2 = std::min(r2, b[k].r);
  87. }
  88. if (l2 > r2) return false;
  89. if (query(root, 1, n, l2, r2) == (r2 - l2 + 1)) return false;
  90. modify(root, 1, n, l1, r1);
  91. }
  92. return true;
  93. }
  94. int main() {
  95. n = read();
  96. Q = read();
  97. for (int i = 1; i <= Q; ++i) {
  98. a[i].l = read();
  99. a[i].r = read();
  100. a[i].val = read();
  101. }
  102. int l = 1, r = Q, mid, ans = 0;
  103. while (l <= r) {
  104. mid = (l + r) >> 1;
  105. if (!check(mid)) {
  106. r = mid - 1;
  107. ans = mid;
  108. } else l = mid + 1;
  109. }
  110. printf("%d\n", ans);
  111. return 0;
  112. }

saber

每条不合法的路径都可以与一条从点 出发的路径相对应,那么用总方案数减去不合法的方案数即 ,使用卢卡斯定理计算。

good

考虑答案其实就是求 ,使用线性筛计算
细节:对于每个数计算其最小质因子出现的次数(记为 cnt),在线性筛的时候如果 ,则 ,否则

  1. #include <iostream>
  2. #include <cstdio>
  3. const int MAXN = 1e7;
  4. const int MOD = 998244353;
  5. int n, tot;
  6. int minSum[MAXN | 1], ans[MAXN | 1], prime[MAXN | 1];
  7. inline int read() {
  8. register int x = 0;
  9. register char ch = getchar();
  10. while (!isdigit(ch)) ch = getchar();
  11. while (isdigit(ch)) {
  12. x = x * 10 + ch - '0';
  13. ch = getchar();
  14. }
  15. return x;
  16. }
  17. int main() {
  18. n = read();
  19. int res = 0;
  20. for (int i = 2; i <= n; ++i) {
  21. if (ans[i] == 0) prime[++tot] = i, ans[i] = 2, minSum[i] = 1;
  22. for (int j = 1; j <= tot && i * prime[j] <= n; ++j) {
  23. if (i % prime[j] == 0) {
  24. minSum[i * prime[j]] = minSum[i] + 1;
  25. ans[i * prime[j]] = ans[i] * (minSum[i] + 2) / (minSum[i] + 1);
  26. break;
  27. } else {
  28. minSum[i * prime[j]] = 1;
  29. ans[i * prime[j]] = ans[i] * 2;
  30. }
  31. }
  32. res += (1LL * (ans[i] * (ans[i] - 1)) / 2) % MOD;
  33. res %= MOD;
  34. }
  35. printf("%d\n", res);
  36. }

rich

太神仙了,不改了

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注