@Lilacy
2017-06-08T11:50:40.000000Z
字数 1777
阅读 1229
云数据
Spark Streaming
基本原理
首先,Spark Streaming把实时输入数据流以时间片Δt (如1秒)为单位切分成块。Spark Streaming会把每块数据作为一个RDD,并使用RDD操作处理每一小块数据。每个块都会生成一个Spark Job处理,最终结果也返回多块。
Spark Streaming内部实现原理。
使用Spark Streaming编写的程序与编写Spark程序非常相似,在Spark程序中,主要通过操作RDD(Resilient Distributed Datasets弹性分布式数据集)提供的接口,如map、reduce、filter等,实现数据的批处理。而在Spark Streaming中,则通过操作DStream(表示数据流的RDD序列)提供的接口,这些接口和RDD提供的接口类似。图3和图4展示了由Spark Streaming程序到Spark jobs的转换图。
图3 Spark Streaming程序转换为DStream Graph
图4 DStream Graph转换为Spark jobs
在图3中,Spark Streaming把程序中对DStream的操作转换为DStream Graph,图4中,对于每个时间片,DStream Graph都会产生一个RDD Graph;针对每个输出操作(如print、foreach等),Spark Streaming都会创建一个Spark action;对于每个Spark action,Spark Streaming都会产生一个相应的Spark job,并交给JobManager。JobManager中维护着一个Jobs队列, Spark job存储在这个队列中,JobManager把Spark job提交给Spark Scheduler,Spark Scheduler负责调度Task到相应的Spark Executor上执行。
Spark Streaming的另一大优势在于其容错性,RDD会记住创建自己的操作,每一批输入数据都会在内存中备份,如果由于某个结点故障导致该结点上的数据丢失,这时可以通过备份的数据在其它结点上重算得到最终的结果。
正如Spark Streaming最初的目标一样,它通过丰富的API和基于内存的高速计算引擎让用户可以结合流式处理,批处理和交互查询等应用。因此Spark Streaming适合一些需要历史数据和实时数据结合分析的应用场合。当然,对于实时性要求不是特别高的应用也能完全胜任。另外通过RDD的数据重用机制可以得到更高效的容错处理。