[关闭]
@Lilacy 2017-03-05T23:20:43.000000Z 字数 7965 阅读 1064
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include <stdint.h>
  4. //Addition in GF(2^8)
  5. uint8_t gadd(uint8_t a, uint8_t b) {
  6. return a^b;
  7. }
  8. //Subtraction in GF(2^8)
  9. uint8_t gsub(uint8_t a, uint8_t b) {
  10. return a^b;
  11. }
  12. //Multiplication in GF(2^8)
  13. uint8_t gmult(uint8_t a, uint8_t b) {
  14. uint8_t p = 0, i = 0, hbs = 0;
  15. for (i = 0; i < 8; i++) {
  16. if (b & 1) {
  17. p ^= a;
  18. }
  19. hbs = a & 0x80;
  20. a <<= 1;
  21. if (hbs) a ^= 0x1b; // 0000 0001 0001 1011
  22. b >>= 1;
  23. }
  24. return (uint8_t)p;
  25. }
  26. //Addition of 4 byte words
  27. void coef_add(uint8_t a[], uint8_t b[], uint8_t d[]) {
  28. d[0] = a[0]^b[0];
  29. d[1] = a[1]^b[1];
  30. d[2] = a[2]^b[2];
  31. d[3] = a[3]^b[3];
  32. }
  33. //Multiplication of 4 byte words,m(x) = x4+1
  34. void coef_mult(uint8_t *a, uint8_t *b, uint8_t *d) {
  35. d[0] = gmult(a[0],b[0])^gmult(a[3],b[1])^gmult(a[2],b[2])^gmult(a[1],b[3]);
  36. d[1] = gmult(a[1],b[0])^gmult(a[0],b[1])^gmult(a[3],b[2])^gmult(a[2],b[3]);
  37. d[2] = gmult(a[2],b[0])^gmult(a[1],b[1])^gmult(a[0],b[2])^gmult(a[3],b[3]);
  38. d[3] = gmult(a[3],b[0])^gmult(a[2],b[1])^gmult(a[1],b[2])^gmult(a[0],b[3]);
  39. }
  40. //The cipher Key.
  41. int K;
  42. //Number of columns (32-bit words) comprising the State. For this standard, Nb = 4.
  43. int Nb = 4;
  44. //Number of 32-bit words comprising the Cipher Key. For this standard, Nk = 4, 6, or 8.
  45. int Nk;
  46. //Number of rounds, which is a function of Nk and Nb (which is fixed). For this standard, Nr = 10, 12, or 14.
  47. int Nr;
  48. //S-box transformation table
  49. static uint8_t s_box[256] = {
  50. // 0 1 2 3 4 5 6 7 8 9 a b c d e f
  51. 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0
  52. 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1
  53. 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2
  54. 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3
  55. 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4
  56. 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5
  57. 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6
  58. 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7
  59. 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8
  60. 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9
  61. 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // a
  62. 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // b
  63. 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // c
  64. 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // d
  65. 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // e
  66. 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};// f
  67. //Inverse S-box transformation table
  68. static uint8_t inv_s_box[256] = {
  69. // 0 1 2 3 4 5 6 7 8 9 a b c d e f
  70. 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, // 0
  71. 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, // 1
  72. 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, // 2
  73. 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, // 3
  74. 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, // 4
  75. 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, // 5
  76. 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, // 6
  77. 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, // 7
  78. 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, // 8
  79. 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, // 9
  80. 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, // a
  81. 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, // b
  82. 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, // c
  83. 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, // d
  84. 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, // e
  85. 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};// f
  86. //Generates the round constant Rcon[i]
  87. uint8_t R[] = {0x02, 0x00, 0x00, 0x00};
  88. uint8_t * Rcon(uint8_t i) {
  89. if (i == 1) {
  90. R[0] = 0x01; // x^(1-1) = x^0 = 1
  91. } else if (i > 1) {
  92. R[0] = 0x02;
  93. i--;
  94. while (i-1 > 0) {
  95. R[0] = gmult(R[0], 0x02);
  96. i--;
  97. }
  98. }
  99. return R;
  100. }
  101. void add_round_key(uint8_t *state, uint8_t *w, uint8_t r) {
  102. uint8_t c;
  103. for (c = 0; c < Nb; c++) {
  104. state[Nb*0+c] = state[Nb*0+c]^w[4*Nb*r+4*c+0]; //debug, so it works for Nb !=4
  105. state[Nb*1+c] = state[Nb*1+c]^w[4*Nb*r+4*c+1];
  106. state[Nb*2+c] = state[Nb*2+c]^w[4*Nb*r+4*c+2];
  107. state[Nb*3+c] = state[Nb*3+c]^w[4*Nb*r+4*c+3];
  108. }
  109. }
  110. void mix_columns(uint8_t *state) {
  111. uint8_t a[] = {0x02, 0x01, 0x01, 0x03}; // a(x) = {02} + {01}x + {01}x2 + {03}x3
  112. uint8_t i, j, col[4], res[4];
  113. for (j = 0; j < Nb; j++) {
  114. for (i = 0; i < 4; i++) {
  115. col[i] = state[Nb*i+j];
  116. }
  117. coef_mult(a, col, res);
  118. for (i = 0; i < 4; i++) {
  119. state[Nb*i+j] = res[i];
  120. }
  121. }
  122. }
  123. void inv_mix_columns(uint8_t *state) {
  124. uint8_t a[] = {0x0e, 0x09, 0x0d, 0x0b}; // a(x) = {0e} + {09}x + {0d}x2 + {0b}x3
  125. uint8_t i, j, col[4], res[4];
  126. for (j = 0; j < Nb; j++) {
  127. for (i = 0; i < 4; i++) {
  128. col[i] = state[Nb*i+j];
  129. }
  130. coef_mult(a, col, res);
  131. for (i = 0; i < 4; i++) {
  132. state[Nb*i+j] = res[i];
  133. }
  134. }
  135. }
  136. void shift_rows(uint8_t *state) {
  137. uint8_t i, k, s, tmp;
  138. for (i = 1; i < 4; i++) {
  139. // shift(1,4)=1; shift(2,4)=2; shift(3,4)=3
  140. // shift(r, 4) = r;
  141. s = 0;
  142. while (s < i) {
  143. tmp = state[Nb*i+0];
  144. for (k = 1; k < Nb; k++) {
  145. state[Nb*i+k-1] = state[Nb*i+k];
  146. }
  147. state[Nb*i+Nb-1] = tmp;
  148. s++;
  149. }
  150. }
  151. }
  152. void inv_shift_rows(uint8_t *state) {
  153. uint8_t i, k, s, tmp;
  154. for (i = 1; i < 4; i++) {
  155. s = 0;
  156. while (s < i) {
  157. tmp = state[Nb*i+Nb-1];
  158. for (k = Nb-1; k > 0; k--) {
  159. state[Nb*i+k] = state[Nb*i+k-1];
  160. }
  161. state[Nb*i+0] = tmp;
  162. s++;
  163. }
  164. }
  165. }
  166. void sub_bytes(uint8_t *state) {
  167. uint8_t i, j;
  168. uint8_t row, col;
  169. for (i = 0; i < 4; i++) {
  170. for (j = 0; j < Nb; j++) {
  171. row = (state[Nb*i+j] & 0xf0) >> 4;
  172. col = state[Nb*i+j] & 0x0f;
  173. state[Nb*i+j] = s_box[16*row+col];
  174. }
  175. }
  176. }
  177. void inv_sub_bytes(uint8_t *state) {
  178. uint8_t i, j;
  179. uint8_t row, col;
  180. for (i = 0; i < 4; i++) {
  181. for (j = 0; j < Nb; j++) {
  182. row = (state[Nb*i+j] & 0xf0) >> 4;
  183. col = state[Nb*i+j] & 0x0f;
  184. state[Nb*i+j] = inv_s_box[16*row+col];
  185. }
  186. }
  187. }
  188. void sub_word(uint8_t *w) {
  189. uint8_t i;
  190. for (i = 0; i < 4; i++) {
  191. w[i] = s_box[16*((w[i] & 0xf0) >> 4) + (w[i] & 0x0f)];
  192. }
  193. }
  194. void rot_word(uint8_t *w) {
  195. uint8_t tmp;
  196. uint8_t i;
  197. tmp = w[0];
  198. for (i = 0; i < 3; i++) {
  199. w[i] = w[i+1];
  200. }
  201. w[3] = tmp;
  202. }
  203. void key_expansion(uint8_t *key, uint8_t *w) {
  204. uint8_t tmp[4];
  205. uint8_t i, j;
  206. uint8_t len = Nb*(Nr+1);
  207. for (i = 0; i < Nk; i++) {
  208. w[4*i+0] = key[4*i+0];
  209. w[4*i+1] = key[4*i+1];
  210. w[4*i+2] = key[4*i+2];
  211. w[4*i+3] = key[4*i+3];
  212. }
  213. for (i = Nk; i < len; i++) {
  214. tmp[0] = w[4*(i-1)+0];
  215. tmp[1] = w[4*(i-1)+1];
  216. tmp[2] = w[4*(i-1)+2];
  217. tmp[3] = w[4*(i-1)+3];
  218. if (i%Nk == 0) {
  219. rot_word(tmp);
  220. sub_word(tmp);
  221. coef_add(tmp, Rcon(i/Nk), tmp);
  222. } else if (Nk > 6 && i%Nk == 4) {
  223. sub_word(tmp);
  224. }
  225. w[4*i+0] = w[4*(i-Nk)+0]^tmp[0];
  226. w[4*i+1] = w[4*(i-Nk)+1]^tmp[1];
  227. w[4*i+2] = w[4*(i-Nk)+2]^tmp[2];
  228. w[4*i+3] = w[4*(i-Nk)+3]^tmp[3];
  229. }
  230. }
  231. void cipher(uint8_t *in, uint8_t *out, uint8_t *w) {
  232. uint8_t state[4*Nb];
  233. uint8_t r, i, j;
  234. for (i = 0; i < 4; i++) {
  235. for (j = 0; j < Nb; j++) {
  236. state[Nb*i+j] = in[i+4*j];
  237. }
  238. }
  239. add_round_key(state, w, 0);
  240. for (r = 1; r < Nr; r++) {
  241. sub_bytes(state);
  242. shift_rows(state);
  243. mix_columns(state);
  244. add_round_key(state, w, r);
  245. }
  246. sub_bytes(state);
  247. shift_rows(state);
  248. add_round_key(state, w, Nr);
  249. for (i = 0; i < 4; i++) {
  250. for (j = 0; j < Nb; j++) {
  251. out[i+4*j] = state[Nb*i+j];
  252. }
  253. }
  254. }
  255. void inv_cipher(uint8_t *in, uint8_t *out, uint8_t *w) {
  256. uint8_t state[4*Nb];
  257. uint8_t r, i, j;
  258. for (i = 0; i < 4; i++) {
  259. for (j = 0; j < Nb; j++) {
  260. state[Nb*i+j] = in[i+4*j];
  261. }
  262. }
  263. add_round_key(state, w, Nr);
  264. for (r = Nr-1; r >= 1; r--) {
  265. inv_shift_rows(state);
  266. inv_sub_bytes(state);
  267. add_round_key(state, w, r);
  268. inv_mix_columns(state);
  269. }
  270. inv_shift_rows(state);
  271. inv_sub_bytes(state);
  272. add_round_key(state, w, 0);
  273. for (i = 0; i < 4; i++) {
  274. for (j = 0; j < Nb; j++) {
  275. out[i+4*j] = state[Nb*i+j];
  276. }
  277. }
  278. }
  279. int main(int argc, char *argv[]) {
  280. uint8_t i;
  281. uint8_t key[] = {
  282. 0x00, 0x01, 0x02, 0x03,
  283. 0x04, 0x05, 0x06, 0x07,
  284. 0x08, 0x09, 0x0a, 0x0b,
  285. 0x0c, 0x0d, 0x0e, 0x0f,
  286. 0x10, 0x11, 0x12, 0x13,
  287. 0x14, 0x15, 0x16, 0x17,
  288. 0x18, 0x19, 0x1a, 0x1b,
  289. 0x1c, 0x1d, 0x1e, 0x1f};
  290. uint8_t in[] = {
  291. 0x00, 0x11, 0x22, 0x33,
  292. 0x44, 0x55, 0x66, 0x77,
  293. 0x88, 0x99, 0xaa, 0xbb,
  294. 0xcc, 0xdd, 0xee, 0xff};
  295. uint8_t out[16]; // 128
  296. uint8_t *w; // expanded key
  297. switch (sizeof(key)) {
  298. default:
  299. case 16: Nk = 4; Nr = 10; break;
  300. case 24: Nk = 6; Nr = 12; break;
  301. case 32: Nk = 8; Nr = 14; break;
  302. }
  303. w = malloc(Nb*(Nr+1)*4);
  304. key_expansion(key, w);
  305. cipher(in /* in */, out /* out */, w /* expanded key */);
  306. printf("out:\n");
  307. for (i = 0; i < 4; i++) {
  308. printf("%x %x %x %x ", out[4*i+0], out[4*i+1], out[4*i+2], out[4*i+3]);
  309. }
  310. printf("\n");
  311. inv_cipher(out, in, w);
  312. printf("msg:\n");
  313. for (i = 0; i < 4; i++) {
  314. printf("%x %x %x %x ", in[4*i+0], in[4*i+1], in[4*i+2], in[4*i+3]);
  315. }
  316. printf("\n");
  317. exit(0);
  318. }
添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注