@Bei-S
2021-03-31T11:26:17.000000Z
字数 2465
阅读 799
codeforces
给你一个n,求出大于等于n的第一个满足gcd(x,Sum of digits of x)>1的数。
考虑3的倍数,对于3的倍数一定满足上述条件。故每三个数有一个满足,暴力
#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline bool ck(ll x){
ll sum=0;
ll tmp=x;
while(x) {
sum+=x%10;x/=10;
}
return __gcd(tmp,sum)==1;
}
int main(){
int n;
scanf("%d",&n);
long long x;
for(int i=1;i<=n;i++){
scanf("%lld",&x);
for(ll i=x;i;i++) if(!ck(i)){
printf("%lld\n",i);
break;
}
}
}
给你一个宽为W的盒子和一些高为1,宽为2^x的矩形,矩形不能重叠,问盒子至少为多高可以放下所有矩形
直接贪心,每一层放最大的,当放不下时就要新开一层。同时可以用一个优先队列记录当前每一层剩余宽度,这样保证每次找到的剩余宽度最大。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=1e5+7;
int n,W,w[N],ans;
priority_queue<int> q;
inline bool cmp(int a,int b){
return a>b;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&W);
ans=0;
while(!q.empty()) q.pop();
for(int i=1;i<=n;i++) scanf("%d",&w[i]);
sort(w+1,w+1+n,cmp);
for(int i=1;i<=n;i++){
if(q.empty()) {
q.push(W);
ans++;
}
if(q.top()<w[i]){
ans++;
q.push(W);
}
int x=q.top()-w[i];
q.pop();
q.push(x);
}
cout<<ans<<endl;
}
}
有n架飞机和一个寿命为k的粒子,当粒子撞上飞机且寿命不为1时,他会产生一个方向相反的寿命为k-1的粒子,自己寿命不变并继续保持原方向穿过飞机。给你飞机数量n,k,问最后有多少个粒子。
dp,设计状态dp[i][j][d]为寿命为j的粒子以方向d撞向第i个飞机所能产生的粒子数。
How to update the DP states? If k=1, the value of dpn[d] for any n or d is obviously 1 (as no copies are produced).
So, let us consider a particle P with k>1. This particle P produces a copy P′ going in the opposite direction. We can count the number of particles produced by P′ as dp[n — 1][k — 1][1 — d], as it hits the previous plane with a smaller decay age and in the opposite direction. Moreover, the particle P itself hits the next plane and continues to produce more stuff. We can calculate its number of particles produced as dp[n + 1][k][d], as it hits the next plane with the same decay age and the same direction!
Finally, we can combine these two values to get the value of dp[n][k][d].
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
const int N = 1001;
const int K = 1001;
int n, k;
const int mod = 1e9 + 7;
int dp[N][K][2];
int solve(int curr, int k, int dir) {
if (k == 1) {
return 1;
}
if (dp[curr][k][dir] != -1) {
return dp[curr][k][dir];
}
int ans = 2; // me and my copy
if (dir == 1) {
if (curr < n)
ans += solve(curr + 1, k, dir) — 1;
ans %= mod;
if (curr > 1)
ans += solve(curr — 1, k — 1, 1 — dir) — 1;
ans %= mod;
dp[curr][k][dir] = ans;
} else {
if (curr > 1)
ans += solve(curr — 1, k, dir) — 1;
ans %= mod;
if (curr < n)
ans += solve(curr + 1, k — 1, 1 — dir) — 1;
ans %= mod;
dp[curr][k][dir] = ans;
}
return ans;
}
int main() {
int t;
cin >> t;
while (t--) {
cin >> n >> k;
memset(dp, -1, sizeof(dp));
cout << solve(1, k, 1) << endl;
}
}