@rickyChen
2016-04-29T14:49:47.000000Z
字数 3816
阅读 4898
Spark
主函数的编写在 projectName/src/main/scala/.../下完成,如果按照上述步骤完成代码搭建,将在目录最后发现
MyRouteBuild
MyRouteMain
这两个文件为模块文件,删除MyRouteBuild
,重命名MyRouteMain
为DirectKafkaWordCount
。这里,我使用Spark Streaming官方提供的一个代码为实例代码,代码如下
package org.apache.spark.examples.streaming
import kafka.serializer.StringDecoder
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.SparkConf
object DirectKafkaWordCount {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("...")
System.exit(1)
}
//StreamingExamples.setStreamingLogLevels()
val Array(brokers, topics) = args
val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(2))
// Create direct kafka stream with brokers and topics
val topicsSet = topics.split(",").toSet
val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topicsSet)
// Get the lines, split them into words, count the words and print
val lines = messages.map(_._2)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
wordCounts.print()
// Start the computation
ssc.start()
ssc.awaitTermination()
}
}
将代码最上面的package org.apache.spark.examples.streaming
,替换为DirectKafkaWordCount
里的package
部分即可。并覆盖DirectKafkaWordCount
文件。
至此Spark处理代码已经编写完成。
pom.xml
,为项目打包做准备pom.xml
中编写了整个项目的依赖关系,这个项目中我们需要导入一些Spark Streaming
相关的包。
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.4.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>1.4.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.4.1</version>
</dependency>
<!-- scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.10.4</version>
</dependency>
除此之外,如果需要把相关依赖打包到最终JAR
包中,需要在pom.xml
的bulid标签中写入以下配置:
<plugins>
<!-- Plugin to create a single jar that includes all dependencies -->
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.4</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.0.2</version>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
pom.xml
文件修改完成后,即可开始maven打包,操作如图:
点击右侧弹出窗口的Execute Maven Goal,在command line
中输入clean package
在项目projectname/target
目录下即可找到两个jar
包,其中一个仅包含Scala代码,另一个包含所有依赖的包。
将jar
包导到Spark服务器,运行Spark作业,运行操作如下
../bin/spark-submit --master yarn-client --jars ../lib/kafka_2.10-0.8.2.1.jar --class huochen.spark.example.DirectKafkaWordCount sparkExample-1.0-SNAPSHOT-jar-with-dependencies.jar kafka-broker topic
利用spark-submit
把任务提交到Yarn集群,即可看到运行结果。