@qqiseeu
2013-11-23T09:45:49.000000Z
字数 8580
阅读 4940
基本环境
参考 Linux内核完全剖析 中p814—815的说明作相应的修改,具体为
(假设内核源代码位于linux-0.11-deb顶层目录下)
as -o boot/head.o boot/head.s
boot/head.s: Assembler messages:
boot/head.s:43: Error: unsupported instruction `mov'
这是因为本机系统为64位,因此需要给所有Makefile中的as命令加上 --32 选项。类似地,根据GCC在线手册的说明 (见下方),需给所有Makefile中的CFLAGS加上 -m32 选项。
"The -m32 option sets int, long, and pointer types to 32 bits, and generates code that runs on any i386 system."
init/main.c:23:29: error: static declaration of ‘fork’ follows non-static declaration
static inline _syscall0(int,fork)
include/unistd.h:134:6: note: in definition of macro ‘_syscall0’
type name(void) \
init/main.c:24:29: error: static declaration of ‘pause’ follows non-static declaration
static inline _syscall0(int,pause)
include/unistd.h:134:6: note: in definition of macro ‘_syscall0’
type name(void) \
include/unistd.h:224:5: note: previous declaration of ‘pause’ was here
int pause(void);
init/main.c:26:29: error: static declaration of ‘sync’ follows non-static declaration
static inline _syscall0(int,sync)
include/unistd.h:134:6: note: in definition of macro ‘_syscall0’
type name(void) \
include/unistd.h:235:5: note: previous declaration of ‘sync’ was here
int sync(void);
这是因为fork(), pause(), sync()在unistd.h中被声明为int类型,而在main.c中它们却被定义成了static inline int类型。(注意在内核代码中只有main.c中直接调用了了这三个函数) 可以用预处理指令的方法在main.c中屏蔽上述三个函数在unistd.h中的声明(似乎也可以用extern inline的方法修改这三个函数的定义来得到相同的效果,但是由于extern inline的特性比较奇怪,不推荐使用)。具体为:
在main.c中#include <unistd.h>
之前加上一句#define __IN_MAIN__
,然后用#ifndef
将fork、pause、sync在unistd.h中的声明包裹起来:
#ifndef __IN_MAIN__
int fork(void);
int pause(void);
int sync(void);
#endif
In file included from fork.c:15:0:
fork.c: In function ‘copy_mem’:
../include/linux/sched.h:189:1: error: ‘asm’ operand has impossible constraints
__asm__("movw %%dx,%0\n\t" \
../include/linux/sched.h:211:28: note: in expansion of macro ‘_set_base’
#define set_base(ldt,base) _set_base( ((char *)&(ldt)) , base )
fork.c:54:2: note: in expansion of macro ‘set_base’
set_base(p->ldt[1],new_code_base);
../include/linux/sched.h:189:1: error: ‘asm’ operand has impossible constraints
__asm__("movw %%dx,%0\n\t" \
../include/linux/sched.h:211:28: note: in expansion of macro ‘_set_base’
#define set_base(ldt,base) _set_base( ((char *)&(ldt)) , base )
fork.c:55:2: note: in expansion of macro ‘set_base’
set_base(p->ldt[2],new_data_base);
上述问题是由于内联汇编的写法不规范所致。根据GCC手册中对asm关键字的介绍
“ You may not write a clobber description in a way that overlaps with an input or output operand. For example, you may not have an operand describing a register class with one member if you mention that register in the clobber list. Variables declared to live in specific registers , and used as asm input or output operands must have no part mentioned in the clobber description. There is no way for you to specify that an input operand is modified without also specifying it as an output operand. ”
意即使用asm嵌入汇编语句时,若一个寄存器出现在“clobbered register”(即会被修改的寄存器)列表中,则其不能再出现于输出寄存器或输入寄存器列表中。include/linux/sched.h的第189行开始的代码如下:
#define _set_base(addr,base) \
__asm__("movw %%dx,%0\n\t" \
"rorl $16,%%edx\n\t" \
"movb %%dl,%1\n\t" \
"movb %%dh,%2" \
::"m" (*((addr)+2)), \
"m" (*((addr)+4)), \
"m" (*((addr)+7)), \
"d" (base)) \
:"dx")
可以看出寄存器dx同时出现在了输入寄存器列表和clobbered register列表中,因此编译无法通过。修改方法:将clobbered register list删了即可。 同样的问题还出现在如下几个地方:
ld -r -o kernel.o sched.o system_call.o traps.o asm.o fork.o panic.o printk.o vsprintf.o sys.o exit.o signal.o mktime.o
ld: Relocatable linking with relocations from format elf32-i386 (sched.o) to format elf64-x86-64 (kernel.o) is not supported
同样,问题也是源于在64位系统上ld默认链接成的目标文件也为64位,只需将所有Makefile中的LD由 ld 改为 ld -m elf_i386 即可(这个选项比较奇怪,根据ld的手册,似乎不应该是靠这个选项来设置,但是它确实起作用)。
../include/asm/segment.h: Assembler messages:
../include/asm/segment.h:27: Error: bad register name `%dil'
../include/asm/segment.h:27: Error: bad register name `%sil'
include/asm/segment.h的第27行如下:
extern inline void put_fs_byte(char val,char *addr)
{
__asm__ ("movb %0,%%fs:%1"::"r" (val),"m" (*addr));
}
其中"r"表示使用任意动态分配的寄存器,将其改为"q"即可。"q"表示使用动态分配字节可寻址寄存器(eax,ebx,ecx或edx)。(其中的原理我也不是很清楚,如果有人知道的话烦请留言说明,不胜感激!)
exec.c: In function ‘copy_strings’:
exec.c:139:44: error: lvalue required as left operand of assignment
!(pag = (char *) page[p/PAGE_SIZE] =
fs/exec.c的第139行如下:
if (!(pag = (char *) page[p/PAGE_SIZE]) &&
!(pag = (char *) page[p/PAGE_SIZE] =
(unsigned long *) get_free_page()))
return 0;
在if的条件判断式中,依连等号的求值顺序,首先求值的表达式是
(char *) page[p/PAGE_SIZE] = (unsigned long *) get_free_page()
这个是无法编译通过的,需要把它拆成两部分:
if (!(pag = (char *) page[p/PAGE_SIZE])) {
page[p/PAGE_SIZE] = (unsigned long *) get_free_page();
if (!(pag = (char *)page[p/PAGE_SIZE]))
return 0;
}
malloc.c中也存在类似问题,应将156行的
bdesc->page = bdesc->freeptr = (void *) cp = get_free_page();
改为
cp = (char*)get_free_page();
bdesc->page = bdesc->freeptr = (void *) cp;
blk.h:87:6: error: #elif with no expression
#elif
把kernel/blk_drv/blk.h中第87行的#elif
改为#else
即可。
as --32 -c -o keyboard.o keyboard.s
keyboard.S: Assembler messages:
keyboard.S:47: Error: `%al' not allowed with `xorl'
将kernel/chr_drv/keyboard.S第47行的xorl
改为xorb
,因操作数是al寄存器,它是8位的。
ld -m elf_i386 -s -x -M boot/head.o init/main.o \
kernel/kernel.o mm/mm.o fs/fs.o \
kernel/blk_drv/blk_drv.a kernel/chr_drv/chr_drv.a \
kernel/math/math.a \
lib/lib.a \
-o tools/system > System.map
ld: warning: cannot find entry symbol _start; defaulting to 0000000008048098
这是因为ld在将所有目标文件链接起来时,不知道程序的入口点在哪里。由内核的启动过程知其从head.s中开始执行,因此给head.s的 .text 段添加一句 .globl startup_32,然后给 ./Makefile 中的ld加上选项 -e startup_32 以指定入口点。
另外注意,仅指定入口点的标号还不够,后续使用tools/build构建Image仍会出错,因为此时程序入口点的地址仍是0x8048098(见上方出错信息的最后一行),而在tools/build.c中处理system模块时,认定的合法入口点地址为0x0:
tools/build.c:
157 if ((id=open(argv[3],O_RDONLY,0))<0)
158 die("Unable to open 'system'");
159 if (read(id,buf,GCC_HEADER) != GCC_HEADER)
160 die("Unable to read header of 'system'");
161 if (((long *) buf)[5] != 0) //判断入口点地址是否为0x0
162 die("Non-GCC header of 'system'");
因此还需添加 -Ttext 0 选项使startup_32标号对应的地址为0x0(更详细的说明见ld的手册,另有一个讨论见这里)。
还有一个问题是,上述代码中第161行上执行的检查是buf[]中第24-27的四个字节的内容,因为程序假设在这个位置上保存着ELF头中的程序入口地址,然而事实上对于本机的GCC编译出的目标文件,使用readelf
命令查看其ELF头格式如下:
~/Src/LinuxKernel/0.11/linux-0.11-deb$ readelf -h tools/system
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x0
Start of program headers: 52 (bytes into file)
...
再结合od
命令的结果:
~/Src/LinuxKernel/0.11/linux-0.11-deb$ od -w4 -N 80 -x tools/system
0000000 457f 464c
0000004 0101 0001
0000010 0000 0000
*
0000020 0002 0003
0000024 0001 0000
0000030 0000 0000
0000034 0034 0000
...
可以看出入口点地址事实上位于ELF头中第28-30字节的位置上,也就是((long*)buf)[6]
处,所以应对tools/build.c作对应的修改。(关于ELF头的格式,更详细的讨论见这里)
gcc -m32 -Wall -O -fstrength-reduce -fomit-frame-pointer -mtune=i386 \
-o tools/build tools/build.c
In file included from /usr/include/features.h:395:0,
from /usr/include/stdio.h:27,
from tools/build.c:23:
/usr/include/gnu/stubs.h:7:27: fatal error: gnu/stubs-32.h: No such file or directory
# include <gnu/stubs-32.h>
很显然这又是一个因64位系统上缺少32位库导致的问题(更多细节见这里),从源里装个32位库即可:
sudo aptitude install libc6-dev-i386
tools/build.c: In function ‘main’:
tools/build.c:72:4: warning: implicit declaration of function ‘MAJOR’ [-Wimplicit-function-declaration]
major_root = MAJOR(sb.st_rdev);
tools/build.c:73:4: warning: implicit declaration of function ‘MINOR’ [-Wimplicit-function-declaration]
minor_root = MINOR(sb.st_rdev);
/tmp/cctAdnmd.o: In function `main':
build.c:(.text+0xc7): undefined reference to `MAJOR'
build.c:(.text+0xe1): undefined reference to `MINOR'
collect2: error: ld returned 1 exit status
build.c中包含的是标准库的头文件 /usr/include/linux/fs.h ,但是这个头文件里并没有实现MAJOR
和MINOR
宏。解决方法很简单,从include/linux/fs.h中把这两个宏复制到build.c中即可:
#define MAJOR(a) (((unsigned)(a))>>8)
#define MINOR(a) ((a)&0xff)
tools/build boot/bootsect boot/setup tools/system /dev/hd6 > Image
/dev/hd6: No such file or directory
Couldn't stat root device.
这是因为在源代码顶层目录的Makefile中所指定的根设备为/dev/hd6(代表第二个硬盘的第一个分区), 而本机上并不存在这个设备所致。Linus当年之所以指定根设备为/dev/hd6, 是因为他把Linux 0.11安装在了机子的第二块硬盘上。我们这里打算通过在bochs中模拟软盘来启动编译好的系统,故在顶层目录Makefile中设定根设备为软盘:
ROOT_DEV=FLOPPY
tools/build.c使用Makefile中指定的ROOT_DEV
对应的设备号覆盖Image文件中的第509、510字节(即地址508、509处),这两个字节所保存的根设备号将被bootsect.s使用。
tools/build.c
115 buf[508] = (char)minor_root
116 buf[509] = (char)major_root
117 i = write(1, buf, 512); //注意标准输出已经被重定向至Image文件
基本上编译中会遇到的问题就是这些,另推荐这篇博文, 主要介绍的是在32位Ubuntu 11系统下编译并调试运行linux 0.11的过程。编译成功源代码只是第一步,接下来通过调试源代码弄清内核的工作细节才是最艰苦的,不过那将是另一个故事了:-)
contact with me: @xdu_gxy