@morehigh
2017-04-19T15:00:08.000000Z
字数 4676
阅读 1160
未分类
A - Binary Simulation
题意:
给出T个测试样例,每个样例包含一个长度为n的二进制数,q个查询,其中 “I i j”表示反转从第i到第j的数,0变1,1变0“Q i”查询第i个数是0还是1,并输出此数
解题思路:
记录每个数反转的次数,如果反转的次数为奇数次,则这个数取反,如果是偶数次,这个数就是原来那个数,没有发生变化。用线段树来维护区间反转的次数,其中用到lazy数组优化时间复杂度。
代码:
#include <cstdio>#include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N=100005;int tre[N<<2],lazy[N<<2];char s[N];int n,len;void pushdown(int num){if(lazy[num]!=0){tre[num<<1]+=lazy[num];tre[num<<1|1]+=lazy[num];lazy[num<<1]+=lazy[num];lazy[num<<1|1]+=lazy[num];lazy[num]=0;}}void update(int num,int l,int r,int x,int y){if(x<=l&&y>=r){tre[num]++;lazy[num]++;return ;}pushdown(num);int mid=(l+r)>>1;if(x<=mid)update(num<<1,l,mid,x,y);if(y>mid)update(num*2+1,mid+1,r,x,y);}int query(int num,int x,int l,int r){if(x==l&&x==r){return tre[num];}pushdown(num);int mid=(l+r)>>1;if(x<=mid)return query(num<<1,x,l,mid);elsereturn query(num*2+1,x,mid+1,r);}int main(){int t,cas=1;scanf("%d",&t);while(t--){scanf("%s %d",s+1,&n);len=strlen(s+1);memset(tre,0,sizeof(tre));memset(lazy,0,sizeof(lazy));printf("Case %d:\n",cas++);while(n--){char mm[2];scanf("%s",mm);if(mm[0]=='I'){int l,r;scanf("%d%d",&l,&r);update(1,1,len,l,r);}else{int x;scanf("%d",&x);int ans=query(1,x,1,len);if(ans%2){printf("%d\n", (s[x] == '0') ? 1 : 0);}else{printf("%d\n", (s[x] == '0') ? 0 : 1);}}}}return 0;}
B - Points in Segments
题意:
T个测试样例,每个测试样例包含n (1 ≤ n ≤ 105)个数字,q(1 ≤ q ≤ 50000)个查询,查询这n个数中大于等于a小于等于b的个数
解题思路:
二分查找,用到upper_bound(a,a+n,r)-a,lower_bound(a,a+n,l)-a。
代码:
#include <cstdio>#include <iostream>#include <cstring>#include <algorithm>using namespace std;int a[100086];int main(){int t,n,q;scanf("%d",&t);for(int cas=1;cas<=t;cas++){scanf("%d%d",&n,&q);for(int i=0;i<n;i++)scanf("%d",&a[i]);printf("Case %d:\n",cas);while(q--){int l,r;scanf("%d%d",&l,&r);int x=upper_bound(a,a+n,r)-a;int y=lower_bound(a,a+n,l)-a;printf("%d\n",x-y);}}return 0;}
C - Calm Down
题意:
半径为R的大圆里,存在n个半径为r小圆,求半径最大为多少?
解题思路:
根据大圆与小圆半径之间的关系,连接大圆圆心与小圆圆心,做过大圆圆心与小圆的切线,则切线与连线夹角为pi/n,根据公式可得hh=sin(pi/n),r/(R+r)=hh;
代码:
#include <cstdio>#include <iostream>#include <cstring>#include <algorithm>#include <cmath>#define pi acos(-1.0)using namespace std;int main(){int t,cas=1;scanf("%d",&t);while(t--){double R;int n;scanf("%lf%d",&R,&n);double hh=sin(pi/n);printf("Case %d: %.7lf\n",cas++,hh*R/(1+hh));}return 0;}
D - Neighbor House
题意:
给n座房子染色,每座房子可以染成三种颜色“R G B”,染每种颜色需要一定的费用,求将这座房子染完颜色后所需要的最小花费。
解题思路:
动态规划,由于相邻的两个房子不能是同一种颜色,状态转移方程:dp[i][0]=min(dp[i-1][1],dp[i-1][2])+r[i];dp[i][1]=min(dp[i-1][0],dp[i-1][2])+g[i];dp[i][2]=min(dp[i-1][1],dp[i-1][0])+b[i];
代码:
#include <cstdio>#include <iostream>#include <cstring>#include <algorithm>using namespace std;int dp[105][5];int r[105],g[105],b[105];int main(){int t,cas=1;scanf("%d",&t);while(t--){int n;scanf("%d",&n);for(int i=1;i<=n;i++){scanf("%d%d%d",&r[i],&g[i],&b[i]);}memset(dp,0,sizeof(dp));for(int i=1;i<=n;i++){dp[i][0]=min(dp[i-1][1],dp[i-1][2])+r[i];dp[i][1]=min(dp[i-1][0],dp[i-1][2])+g[i];dp[i][2]=min(dp[i-1][1],dp[i-1][0])+b[i];}int ans;ans=min(dp[n][0],dp[n][1]);ans=min(dp[n][2],ans);printf("Case %d: %d\n",cas++,ans);}return 0;}
E - Array Queries
题意:
有n(1 ≤ N ≤ 105)个数,q(1 ≤ q ≤ 50000)个查询,查询从i到j区间最小值
解题思路:
线段树模版
代码:
#include <cstdio>#include <iostream>#include <cstring>#include <algorithm>using namespace std;const int inf=0x3f3f3f3f;const int N=100086;int tre[N<<2],a[N];void build(int l,int r,int rt){if(l==r){tre[rt]=a[l];// cout<<tre[rt]<<" "<<l<<endl;return ;}int m=(l+r)>>1;build(l,m,rt<<1);build(m+1,r,rt<<1|1);tre[rt]=min(tre[rt<<1],tre[rt<<1|1]);}int query(int l,int r,int x,int y,int rt){if(x<=l&&y>=r){return tre[rt];}int m=(l+r)>>1;int ans=inf;if(x<=m)ans=min(query(l,m,x,y,rt<<1),ans);if(y>m)ans=min(ans,query(m+1,r,x,y,rt<<1|1));return ans;}int main(){int t,cas=1,n,q;scanf("%d",&t);while(t--){scanf("%d%d",&n,&q);for(int i=1;i<=n;i++)scanf("%d",&a[i]);build(1,n,1);printf("Case %d:\n",cas++);while(q--){int x,y;scanf("%d%d",&x,&y);int ans=query(1,n,x,y,1);printf("%d\n",ans);}}return 0;}
F - Farthest Nodes in a Tree
题意:
树上有n个点,u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) 表示从u点到v点的距离为w,求出树上最远的两个点之间的距离为多少
解题思路:
树的直径先搜索一遍找到最远的那个点,然后把这个点当作根节点,再找到离这个点最远的点,此时得到的最远的距离就是树上的最大距离
代码:
#include <cstdio>#include <iostream>#include <cstring>#include <algorithm>using namespace std;struct Node{int to,w;int next;}edge[60005];int head[30005],cnt;int vis[30005];int max1,pos;void add(int u,int v,int w){edge[cnt].to=v;edge[cnt].w=w;edge[cnt].next=head[u];head[u]=cnt++;}void dfs(int u,int la,int dis){int hh=0;for(int i=head[u];i!=-1;i=edge[i].next){int v=edge[i].to;int w=edge[i].w;if(la==v) continue;// vis[v]=1;hh++;dfs(v,u,dis+w);}if(hh==0&&max1<dis){max1=dis;pos=u;}return ;}int main(){int t,cas=1;int u,v,w;scanf("%d",&t);while(t--){int n;scanf("%d",&n);memset(head,-1,sizeof(head));cnt=0;for(int i=0;i<n-1;i++){scanf("%d%d%d",&u,&v,&w);add(u,v,w);add(v,u,w);}max1=0;dfs(0,-1,0);// cout<<max1<<endl;max1=0;dfs(pos,-1,0);printf("Case %d: %d\n",cas++,max1);}return 0;}