@RabbitHu
2017-09-24T06:27:14.000000Z
字数 4397
阅读 2271
笔记
※本文一切代码未经编译,不保证正确性,如发现问题,欢迎指正!
最简单的树状数组就是这样的:
void add(int p, int x){ //给位置p增加xwhile(p <= n) sum[p] += x, p += p & -p;}int ask(int p){ //求位置p的前缀和int res = 0;while(p) res += sum[p], p -= p & -p;return res;}int range_ask(int l, int r){ //区间求和return ask(r) - ask(l - 1);}
通过“差分”(就是记录数组中每个元素与前一个元素的差),可以把这个问题转化为问题1。
设原数组为, 设数组,则 ,可以通过求的前缀和查询。
当给区间加上x的时候, 与前一个元素 的差增加了, 与 的差减少了。根据数组的定义,只需给 加上 , 给 减去 即可。
void add(int p, int x){ //这个函数用来在树状数组中直接修改while(p <= n) sum[p] += x, p += p & -p;}void range_add(int l, int r, int x){ //给区间[l, r]加上xadd(l, x), add(r + 1, -x);}int ask(int p){ //单点查询int res = 0;while(p) res += sum[p], p -= p & -p;return res;}
这是最常用的部分,也是用线段树写着最麻烦的部分——但是现在我们有了树状数组!
怎么求呢?我们基于问题2的“差分”思路,考虑一下如何在问题2构建的树状数组中求前缀和:
位置p的前缀和 =
在等式最右侧的式子中, 被用了次,被用了次……那么我们可以写出:
位置p的前缀和 =
那么我们可以维护两个数组的前缀和:
一个数组是 ,
另一个数组是 。
位置p的前缀和即: (p + 1) * sum1数组中p的前缀和 - sum2数组中p的前缀和。
区间[l, r]的和即:位置r的前缀和 - 位置l的前缀和。
对于sum1数组的修改同问题2中对d数组的修改。
对于sum2数组的修改也类似,我们给 sum2[l] 加上 l * x,给 sum2[r + 1] 减去 (r + 1) * x。
void add(ll p, ll x){for(int i = p; i <= n; i += i & -i)sum1[i] += x, sum2[i] += x * p;}void range_add(ll l, ll r, ll x){add(l, x), add(r + 1, -x);}ll ask(ll p){ll res = 0;for(int i = p; i; i -= i & -i)res += (p + 1) * sum1[i] - sum2[i];return res;}ll range_ask(ll l, ll r){return ask(r) - ask(l - 1);}
用这个做区间修改区间求和的题,无论是时间上还是空间上都比带lazy标记的线段树要优。
我们已经学会了对于序列的常用操作,那么我们不由得想到(谁会想到啊喂)……能不能把类似的操作应用到矩阵上呢?这时候我们就要写二维树状数组了!
在一维树状数组中,tree[x](树状数组中的那个“数组”)记录的是右端点为x、长度为lowbit(x)的区间的区间和。
那么在二维树状数组中,可以类似地定义tree[x][y]记录的是右下角为(x, y),高为lowbit(x), 宽为 lowbit(y)的区间的区间和。
void add(int x, int y, int z){ //将点(x, y)加上zint memo_y = y;while(x <= n){y = memo_y;while(y <= n)tree[x][y] += z, y += y & -y;x += x & -x;}}void ask(int x, int y){//求左上角为(1,1)右下角为(x,y) 的矩阵和int res = 0, memo_y = y;while(x){y = memo_y;while(y)res += tree[x][y], y -= y & -y;x -= x & -x;}}
我们对于一维数组进行差分,是为了使差分数组前缀和等于原数组对应位置的元素。
那么如何对二维数组进行差分呢?可以针对二维前缀和的求法来设计方案。
二维前缀和:
那么我们可以令差分数组 表示 与 的差。
例如下面这个矩阵
1 4 8
6 7 2
3 9 5
对应的差分数组就是
1 3 4
5 -2 -9
-3 5 1
当我们想要将一个矩阵加上x时,怎么做呢?
下面是给最中间的3*3矩阵加上x时,差分数组的变化:
0 0 0 0 0
0 +x 0 0 -x
0 0 0 0 0
0 0 0 0 0
0 -x 0 0 +x
这样给修改差分,造成的效果就是:
0 0 0 0 0
0 x x x 0
0 x x x 0
0 x x x 0
0 0 0 0 0
那么我们开始写代码吧!
void add(int x, int y, int z){int memo_y = y;while(x <= n){y = memo_y;while(y <= n)tree[x][y] += z, y += y & -y;x += x & -x;}}void range_add(int xa, int ya, int xb, int yb, int z){add(xa, ya, z);add(xa, yb + 1, -z);add(xb + 1, ya, -z);add(xb + 1, yb + 1, z);}void ask(int x, int y){int res = 0, memo_y = y;while(x){y = memo_y;while(y)res += tree[x][y], y -= y & -y;x -= x & -x;}}
类比之前一维数组的区间修改区间查询,下面这个式子表示的是点(x, y)的二维前缀和:
这个式子炒鸡复杂( 复杂度!),但利用树状数组,我们可以把它优化到 !
首先,类比一维数组,统计一下每个出现过多少次。出现了次,出现了次…… 出现了 次。
那么这个式子就可以写成:
把这个式子展开,就得到:
那么我们要开四个树状数组,分别维护:
这样就完成了!
#include <cstdio>#include <cmath>#include <cstring>#include <algorithm>#include <iostream>using namespace std;typedef long long ll;ll read(){char c; bool op = 0;while((c = getchar()) < '0' || c > '9')if(c == '-') op = 1;ll res = c - '0';while((c = getchar()) >= '0' && c <= '9')res = res * 10 + c - '0';return op ? -res : res;}const int N = 205;ll n, m, Q;ll t1[N][N], t2[N][N], t3[N][N], t4[N][N];void add(ll x, ll y, ll z){for(int X = x; X <= n; X += X & -X)for(int Y = y; Y <= m; Y += Y & -Y){t1[X][Y] += z;t2[X][Y] += z * x;t3[X][Y] += z * y;t4[X][Y] += z * x * y;}}void range_add(ll xa, ll ya, ll xb, ll yb, ll z){ //(xa, ya) 到 (xb, yb) 的矩形add(xa, ya, z);add(xa, yb + 1, -z);add(xb + 1, ya, -z);add(xb + 1, yb + 1, z);}ll ask(ll x, ll y){ll res = 0;for(int i = x; i; i -= i & -i)for(int j = y; j; j -= j & -j)res += (x + 1) * (y + 1) * t1[i][j]- (y + 1) * t2[i][j]- (x + 1) * t3[i][j]+ t4[i][j];return res;}ll range_ask(ll xa, ll ya, ll xb, ll yb){return ask(xb, yb) - ask(xb, ya - 1) - ask(xa - 1, yb) + ask(xa - 1, ya - 1);}int main(){n = read(), m = read(), Q = read();for(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){ll z = read();range_add(i, j, i, j, z);}}while(Q--){ll ya = read(), xa = read(), yb = read(), xb = read(), z = read(), a = read();if(range_ask(xa, ya, xb, yb) < z * (xb - xa + 1) * (yb - ya + 1))range_add(xa, ya, xb, yb, a);}for(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++)printf("%lld ", range_ask(i, j, i, j));putchar('\n');}return 0;}