[关闭]
@Plutorabbit 2017-02-19T10:48:39.000000Z 字数 5217 阅读 1874

CQOI 2016

BZOJ 2016 OI


BZOJ 4519~BZOJ 4524

[Cqoi2016]不同的最小割

[Cqoi2016]K远点对

KD-tree裸题
当时学校做练习的时候并不会这个东西QAQ

  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. typedef long long LL;
  4. const int NN = 100005;
  5. int n,k,rt,q0,q1,cmp_d;
  6. struct TR
  7. {
  8. int d[2],mn[2],mx[2],lc,rc;
  9. }tr[NN];
  10. priority_queue<LL,vector<LL>,greater<LL> >que;
  11. bool cmp(TR xx,TR yy) { return xx.d[cmp_d] < yy.d[cmp_d]; }
  12. LL sqr(LL xx) { return xx*xx; }
  13. void push_up(int k)
  14. {
  15. int l = tr[k].lc, r = tr[k].rc;
  16. for (int i=0;i<2;++i)
  17. {
  18. if (l) tr[k].mx[i] = max(tr[k].mx[i],tr[l].mx[i]), tr[k].mn[i] = min(tr[k].mn[i],tr[l].mn[i]);
  19. if (r) tr[k].mx[i] = max(tr[k].mx[i],tr[r].mx[i]), tr[k].mn[i] = min(tr[k].mn[i],tr[r].mn[i]);
  20. }
  21. }
  22. void Build(int &k,int l,int r,int D)
  23. {
  24. int mid = (l+r)>>1; k=mid, cmp_d=D;
  25. nth_element(tr+l,tr+mid,tr+r+1,cmp);
  26. for (int i=0;i<2;++i) tr[k].mx[i] = tr[k].mn[i] = tr[k].d[i];
  27. if (l<mid) Build(tr[k].lc,l,mid-1,D^1);
  28. if (r>mid) Build(tr[k].rc,mid+1,r,D^1);
  29. push_up(k);
  30. }
  31. LL Ask(int k)
  32. {
  33. if (!k) return 0;
  34. return max(sqr(tr[k].mn[0]-q0),sqr(tr[k].mx[0]-q0)) + max(sqr(tr[k].mn[1]-q1),sqr(tr[k].mx[1]-q1));
  35. }
  36. void Query(int k)
  37. {
  38. LL dis = sqr(tr[k].d[0]-q0) + sqr(tr[k].d[1]-q1);
  39. if (dis>que.top()) que.pop(), que.push(dis);
  40. LL Dl = Ask(tr[k].lc), Dr = Ask(tr[k].rc);
  41. if (Dl > Dr)
  42. {
  43. if (Dl > que.top()) Query(tr[k].lc);
  44. if (Dr > que.top()) Query(tr[k].rc);
  45. }
  46. else
  47. {
  48. if (Dr > que.top()) Query(tr[k].rc);
  49. if (Dl > que.top()) Query(tr[k].lc);
  50. }
  51. }
  52. int main()
  53. {
  54. scanf("%d%d",&n,&k);
  55. for (int i=1;i<=n;++i) scanf("%d%d",&tr[i].d[0],&tr[i].d[1]);
  56. Build(rt,1,n,0);
  57. for (int i=1;i<=(k<<1);++i) que.push(0);
  58. for (int i=1;i<=n;++i) q0 = tr[i].d[0], q1 = tr[i].d[1], Query(rt);
  59. printf("%lld\n",que.top());
  60. return 0;
  61. }

[Cqoi2016]手机号码

数位DP
表示 len 当前数值 重复 4/8 ==a[len]
语文越来越差了却还要考学考

  1. #include <iostream>
  2. #include <cstdio>
  3. #include <algorithm>
  4. #include <cmath>
  5. #include <cstdlib>
  6. #include <cstring>
  7. #define LL long long
  8. using namespace std;
  9. LL l,r,ans,f[15][11][5][5][3];
  10. int a[20],tmp[20];
  11. int Xun(int xx,int yy)
  12. {
  13. if (xx+yy>=3) return 3;
  14. else if (xx) return yy+1;
  15. else return 1;
  16. }
  17. int P(int xx,int yy)
  18. {
  19. if (xx==4) return yy|1;
  20. else if (xx==8) return yy|2;
  21. else return yy;
  22. }
  23. LL solve(LL xx)
  24. {
  25. int len=0;
  26. memset(a,0,sizeof(a)); memset(tmp,0,sizeof(tmp));
  27. memset(f,0,sizeof(f));
  28. while (xx) { tmp[++len]=xx%10; xx=xx/10;}
  29. for (int i=1;i<=len;++i) a[i]=tmp[len-i+1];
  30. for (int i=1;i<=a[1];++i) f[1][i][1][P(i,0)][i==a[1]]++;
  31. for (int i=2;i<=len;++i)
  32. {
  33. for (int j=0;j<=9;++j)
  34. for (int k=1;k<=3;++k)
  35. for (int w=0;w<3;++w)
  36. {
  37. if (f[i-1][j][k][w][0])
  38. for (int t=0;t<=9;++t)
  39. f[i][t][Xun(t==j,k)][P(t,w)][0]+=f[i-1][j][k][w][0];
  40. if (f[i-1][j][k][w][1])
  41. for (int t=0;t<=a[i];++t)
  42. f[i][t][Xun(t==j,k)][P(t,w)][t==a[i]]+=f[i-1][j][k][w][1];
  43. }
  44. }
  45. ans=0;
  46. for (int i=0;i<=9;++i)
  47. for (int j=0;j<3;++j) ans+=f[len][i][3][j][0]+f[len][i][3][j][1];
  48. return ans;
  49. }
  50. int main()
  51. {
  52. scanf("%lld%lld",&l,&r);
  53. if (l==10000000000ll) printf("%lld",solve(r));
  54. else printf("%lld",solve(r)-solve(l-1));
  55. return 0;
  56. }

[Cqoi2016]密钥破解

数论模板大综合
要是考场上考泼辣的肉肯定自爆

  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. typedef long long LL;
  4. #define T 10007
  5. LL e,n,c,p,q,r,inv;
  6. LL Mul(LL xx,LL yy,LL mod)
  7. {
  8. LL sum = 0ll;
  9. for (xx%=mod;yy;xx = (xx+xx) % mod, yy >>= 1) if (yy & 1) sum = (sum + xx) % mod;
  10. return sum;
  11. }
  12. LL KSM(LL xx,LL yy,LL mod)
  13. {
  14. LL sum=1ll;
  15. for (xx%=mod;yy;xx = Mul(xx,xx,mod)%mod,yy >>= 1) if (yy&1) sum = Mul(sum,xx,mod)%mod;
  16. return sum;
  17. }
  18. void exGCD(LL a,LL b,LL &x,LL &y)
  19. {
  20. if (b == 0) { x = 1, y = 0; return; }
  21. exGCD(b,a%b,y,x), y -= a/b*x;
  22. }
  23. LL Get_inv(LL n,LL mod)
  24. {
  25. LL x,y;
  26. exGCD(n,mod,x,y);
  27. return (x%mod + mod) % mod;
  28. }
  29. LL GCD(LL a,LL b)
  30. {
  31. while (a) a ^= b ^= a ^= b %= a;
  32. return b;
  33. }
  34. LL Pollard_Rho(LL n)
  35. {
  36. LL x = rand() % (n-1) + 1,y = x,cnt = 1, k = 2;
  37. while (1)
  38. {
  39. ++cnt;
  40. x = (Mul(x,x,n) + T) % n;
  41. LL gcd = GCD(abs(x-y),n);
  42. if (gcd > 1 && gcd < n) return gcd;
  43. if (x == y) return n;
  44. if (cnt == k) y = x, k <<= 1;
  45. }
  46. }
  47. int main()
  48. {
  49. srand(T);
  50. scanf("%lld%lld%lld",&e,&n,&c);
  51. p = Pollard_Rho(n), q = n / p;
  52. r = (p - 1) * (q - 1);
  53. inv = Get_inv(e,r);
  54. printf("%lld %lld\n",inv,KSM(c,inv,n));
  55. return 0;
  56. }

[Cqoi2016]路由表

感觉现在看到各种01的题目都想着暴力上trie什么的QAQ
反正这题就是暴力上trie
用一个单调栈,使得能够匹配的表项出现的时间随着长度的增加而增加

  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. const int NN = 10005,MM = 31000005;
  4. int X[5],rt,tot,ch[MM][2],v[MM],cnt,top,stk[NN],n,l,r;
  5. char op[11];
  6. void Insert(int l,int t)
  7. {
  8. int now = rt;
  9. for (int i=1;i<=4;++i)
  10. for (int j=7;~j;--j)
  11. {
  12. if (!l)
  13. {
  14. v[now] = t;
  15. return;
  16. }
  17. --l;
  18. if (!ch[now][(X[i]>>j)&1]) ch[now][(X[i]>>j)&1] = ++tot;
  19. now = ch[now][(X[i]>>j)&1];
  20. }
  21. v[now] = t;
  22. }
  23. int Query(int l,int r)
  24. {
  25. int now = rt;
  26. top = 0;
  27. for (int i=1;i<=4;++i)
  28. for (int j=7;~j;--j)
  29. {
  30. now = ch[now][(X[i]>>j)&1];
  31. if (!now)
  32. {
  33. int res = top;
  34. for (int k=1;k<=top;++k) if (stk[k] < l) res --;
  35. return res;
  36. }
  37. if (v[now] <= r && v[now])
  38. {
  39. for (;top&&stk[top] > v[now];--top);
  40. stk[++top] = v[now];
  41. }
  42. }
  43. int res = top;
  44. for (int k=1;k<=top;++k) if (stk[k] < l) -- res;
  45. return res;
  46. }
  47. int main()
  48. {
  49. scanf("%d",&n);
  50. rt = tot = 1;
  51. while (n--)
  52. {
  53. scanf("%s",op);
  54. if (op[0] == 'A')
  55. {
  56. scanf("%d.%d.%d.%d/%d",&X[1],&X[2],&X[3],&X[4],&l);
  57. Insert(l,++cnt);
  58. }
  59. else
  60. {
  61. scanf("%d.%d.%d.%d%d%d",&X[1],&X[2],&X[3],&X[4],&l,&r);
  62. printf("%d\n",Query(l,r));
  63. }
  64. }
  65. return 0;
  66. }

[Cqoi2016]伪光滑数

泥怎么还用STL啊
按顺序乱搞用堆维护就可以了QAQ

  1. #include <cstdio>
  2. #include <queue>
  3. #include <cstring>
  4. #include <algorithm>
  5. using namespace std;
  6. typedef long long LL;
  7. struct REC
  8. {
  9. LL v;
  10. int t,pre,p;
  11. }tmp;
  12. bool operator <(REC xx,REC yy) { return xx.v < yy.v; }
  13. priority_queue <REC> que;
  14. LL n;
  15. int k,pri[55],f[205],tot=0;
  16. int main()
  17. {
  18. scanf("%lld%d",&n,&k);
  19. for (int i=2;i<=128;++i)
  20. if (!f[i])
  21. {
  22. pri[++tot] = i;
  23. for (int j=i+i;j<=128;j+=i) f[j] = 1;
  24. }
  25. while (!que.empty()) que.pop();
  26. for (int i=1;i<=tot;++i)
  27. for (LL t=1,j=1;(LL)(t*pri[i]) <= n;++j)
  28. t *= (LL)pri[i], tmp.v = t, tmp.t = (int)j, tmp.pre = i-1, tmp.p = i, que.push(tmp);
  29. while (k--)
  30. {
  31. tmp = que.top(), que.pop();
  32. if (tmp.t > 1)
  33. {
  34. for (int i=tmp.pre;i;--i)
  35. que.push((REC){(LL)tmp.v/pri[tmp.p]*pri[i],tmp.t-1,i,tmp.p});
  36. }
  37. }
  38. printf("%lld\n",tmp.v);
  39. return 0;
  40. }
添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注